[1] Burr S J, Mccullough D G, Poland T M. Density of emerald ash borer (Coleoptera: Buprestidae) adults and larvae at three stages of the invasion wave[J]. Environmental Entomology, 2018, 47(1): 121-132. doi: 10.1093/ee/nvx200
[2] Davis J C, Shannon J P, Bolton N W, et al. Vegetation responses to simulated emerald ash borer infestation in Fraxinus nigra dominated wetlands of Upper Michigan, USA[J]. Canadian Journal of Forest Research, 2017, 47(3): 319-330. doi: 10.1139/cjfr-2016-0105
[3] 王小艺, 杨忠岐, 魏 可. 白蜡窄吉丁(鞘翅目: 吉丁甲科)的生物防治研究进展[J]. 中国生物防治学报, 2015, 31(5):666-678.
[4] Limback C K. Tree vigor and its relation to emerald ash borer (Agrilus planipennis Fairmaire) adult host preference and larval development on green and white ash trees[J]. Dissertations & Theses - Gradworks, 2010: 1487177.
[5] 孙 元, 王皙玮, 段建军, 等. 白蜡窄吉丁综合防控研究进展[J]. 中国农学通报, 2012, 29(18):158-161.
[6] Hai Z T, Tong G R, Liu H, et al. Host range of emerald ash borer, Agrilus planipennis Fairmaire, its damage and the countermeasures[J]. Acta Entomologica Sinica, 2005, 48: 594-599.
[7] Togola A, Boukar O, Belko N, et al. Host plant resistance to insect pests of cowpea (Vigna unguiculata L. Walp.): achievements and future prospects[J]. Euphytica, 2017, 213(11): 239. doi: 10.1007/s10681-017-2030-1
[8] 窦京海. 白蜡树害虫调查与几种新白蜡害虫的发生规律及防治[D]. 泰安, 山东农业大学, 2016.
[9] Chamorro M L, Volkovitsh M G, Poland T M, et al. Preimaginal stages of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae): an invasive pest on ash trees (Fraxinus)[J]. Plos One, 2012, 7(3): e33185. doi: 10.1371/journal.pone.0033185
[10] Orlova-Bienkowskaja M J, Belokobylskij S A. Discovery of the first European parasitoid of the emerald ash borer Agrilus planipennis Fairmaire (Coleoptera: Buprestidae)[J]. European Journal of Entomology, 2014, 111(4): 594-596. doi: 10.14411/eje.2014.061
[11] 路纪芳, 王小艺, 杨忠岐. 中国白蜡窄吉丁研究进展[J]. 应用昆虫学报, 2012, 49(3):785-792. doi: 10.7679/j.issn.2095-1353.2012.118
[12] Zogli P, Libault M. Plant response to biotic stress: is there a common epigenetic response during plant-pathogenic and symbiotic interactions?[J]. Plant Science, 2017, 263: 89-93. doi: 10.1016/j.plantsci.2017.07.008
[13] Nalam V J. 9-lipoxygenase oxylipin pathway in plant response to biotic stress[J]. Dissertations & Theses-Gradworks, 2012: 3533629.
[14] Melvin P, Bankapalli K, D’Silva P, et al. Methylglyoxal detoxification by a DJ-1 family protein provides dual abiotic and biotic stress tolerance in transgenic plants[J]. Plant Molecular Biology, 2017, 94: 381-397. doi: 10.1007/s11103-017-0613-9
[15] Misra P, Pandey A, Tiwari M, et al. Modulation of transcriptome and metabolome of tobacco by arabidopsis transcription factor, AtMYB12, leads to insect resistance[J]. Plant Physiology, 2010, 152(4): 2258-2268.