[1] 张少斌, 刘 曦, 张立军, 等. 植物微管结合蛋白[J]. 植物生理学通讯, 2009, 45(3):291-298.
[2] Hamada T. Microtubule-associated proteins in higher plants[J]. Journal of Plant Research, 2007, 120(1): 79-98. doi: 10.1007/s10265-006-0057-9
[3] Changjie J, Sonobe S. Identification and preliminary characterization of a 65 kDa higher-plant microtubule-associated protein[J]. Journal of Cell Science, 1993, 105(1): 891-901.
[4] Hamada T. Microtubule organization and microtubule-associated proteins in plant cells[J]. International Review of Cell and Molecular Biology, 2014, 312C: 1-52.
[5] Smertenko A, Saleh N, Igarashi H, et al. A new class of microtubule-associated proteins in plants[J]. Nature Cell Biology, 2000, 2(10): 750-753. doi: 10.1038/35036390
[6] Chan J, Rutten T, Lloyd C. Isolation of microtubule-associated proteins from carrot cytoskeletons: a 120 kDa MAP decorates all four microtubule arrays and the nucleus[J]. The Plant Journal, 1996, 10(2): 251-259. doi: 10.1046/j.1365-313X.1996.10020251.x
[7] Hussey P J, Hawkins T J, Igarashi H, et al. The Plant cytoskeleton: recent advances in the study of the plant microtubule-associated proteins MAP-65, MAP-190 and the Xenopus MAP215-like protein, MOR1[J]. Plant Molecular Biology, 2002, 50(6): 915-924. doi: 10.1023/A:1021236307508
[8] Guo L, Ho C K, Kong Z, et al. Evaluating the microtubule cytoskeleton and its interacting proteins in monocots by mining the rice genome[J]. Annals of Botany, 2009, 103(3): 387-402. doi: 10.1093/aob/mcn248
[9] Kosetsu K, De Keijzer J, Janson M E, et al. MICROTUBULE-ASSOCIATED PROTEIN65 is essential for maintenance of phragmoplast bipolarity and formation of the cell plate in Physcomitrella patens[J]. Plant Cell, 2013, 25(11): 4479-4492. doi: 10.1105/tpc.113.117432
[10] Smertenko A, Kaloriti D, Chang H, et al. The C-terminal variable region specifies the dynamic properties of Arabidopsis microtubule-associated protein MAP65 isotypes[J]. The Plant Cell, 2008, 20(12): 3346-3358. doi: 10.1105/tpc.108.063362
[11] Lucas J R, Courtney S, Hassfurder M, et al. Microtubule-associated proteins MAP65-1 and MAP65-2 positively regulate axial cell growth in etiolated Arabidopsis hypocotyls[J]. The Plant Cell, 2011, 23(5): 1889-1903.
[12] Sabine Müller, Smertenko A, Wagner V, et al. The plant microtubule-associated protein ATMAP65-3/PLE is essential for cytokinetic phragmoplast function[J]. Current Biology, 2004, 14(5): 412-417. doi: 10.1016/j.cub.2004.02.032
[13] Li H, Sun B, Sasabe M, et al. Arabidopsis MAP65‐4 plays a role in phragmoplast microtubule organization and marks the cortical cell division site[J]. New Phytologist, 2017, 215(1): 187-201. doi: 10.1111/nph.14532
[14] Van Damme D, Van Poucke K, Boutant E, et al. In vivo dynamics and differential microtubule-binding activities of MAP65 proteins[J]. Plant Physiology, 2004, 136(4): 3956-3967. doi: 10.1104/pp.104.051623
[15] Mao T, Jin L, Li H, et al. Two microtubule-associated proteins of the Arabidopsis MAP65 family function differently on microtubules[J]. Plant Physiology, 2005, 138(2): 654-662. doi: 10.1104/pp.104.052456
[16] Pellman D, Bagget M, Tu Y H, et al. Two microtubule-associated proteins required for anaphase spindle movement in Saccharomyces cerevisiae[J]. Journal of Cell Biology, 1995, 130(6): 1373-1385. doi: 10.1083/jcb.130.6.1373
[17] Jiang W, Jimenez G, Wells N J, et al. PRC1: A human mitotic spindle-associated CDK substrate protein required for cytokinesis[J]. Molecular Cell, 1999, 2(6): 877-885.
[18] Tuskan G A, Difazio S P, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)[J]. Science, 2006, 313(5793): 1596-1604. doi: 10.1126/science.1128691
[19] Lynch M, Conery J S. The evolutionary fate and consequences of duplicate genes[J]. Science, 2000, 290(5494): 1151-1155. doi: 10.1126/science.290.5494.1151
[20] Gaillard J, Neumann E, Van Damme D, et al. Two microtubule-associated proteins of Arabidopsis MAP65s promote antiparallel microtubule bundling[J]. Molecular Biology of the Cell, 2008, 19(10): 4534-4544.
[21] Smertenko A, Chang H, Sonobe S, et al. Control of the AtMAP65-1 interaction with microtubules through the cell cycle[J]. Journal of Cell Science, 2006, 119(15): 3227-3237. doi: 10.1242/jcs.03051
[22] Mao G, Chan J, Calder G, et al. Modulated targeting of GFP-AtMAP65-1 to central spindle microtubules during division[J]. Plant Journal, 2010, 43(4): 469-478.
[23] Sasabe, M. Phosphorylation of NtMAP65-1 by a MAP kinase down-regulates its activity of microtubule bundling and stimulates progression of cytokinesis of tobacco cells[J]. Genes & Development, 2006, 20(8): 1004.
[24] Cannon S B, Mitra A, Baumgarten A, et al. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana[J]. BMC Plant Biology, 2004, 4(1): 10-10. doi: 10.1186/1471-2229-4-10
[25] Wu S, Han B, Jiao Y, et al. Genetic contribution of paleopolyploidy to adaptive evolution in angiosperms[J]. Molecular Plant, 2020, 13(1): 59-71. doi: 10.1016/j.molp.2019.10.012
[26] Smertenko A, Chang H, Wagner V, et al. The Arabidopsis microtubule-associated protein AtMAP65-1: molecular analysis of its microtubule bundling activity[J]. The Plant Cell, 2004, 16(8): 2035-2047.
[27] Michal Q, Baurès Isabelle, Caroline H, et al. The Arabidopsis microtubule-associated protein MAP65-3 supports infection by filamentous biotrophic pathogens by down-regulating salicylic acid-dependent defenses[J]. Journal of Experimental Botany, 2016(6): 1731-1743.
[28] Damme D V, Bouget F Y, Poucke K V, et al. Molecular dissection of plant cytokinesis and phragmoplast structure: a survey of GFP-tagged proteins[J]. Plant Journal, 2004, 40(3): 386-398. doi: 10.1111/j.1365-313X.2004.02222.x