[1] 徐天森, 林四四, 吕若清. 竹卵圆蝽的研究I. 生物学特性[J]. 林业科学研究, 1988, 1(6):633-640.
[2] 徐天森, 王浩杰. 中国竹子主要害虫[M]. 北京: 中国林业出版社, 2004.
[3] 黄继育, 何防震, 诸炜荣. 安吉县竹卵圆蝽在竹林中的种群动态模型及预测预报[J]. 林业科技通讯, 2015(11):47-49.
[4] 徐天森, 林四四, 吕若清. 竹卵圆蝽的研究II. 天敌及药物防治技术[J]. 林业科学研究, 1989, 2(2):119-123.
[5] 尹新明. 杀虫生物学[M]. 北京: 中国农业出版社, 2016.
[6] Lacey L A, Frutos R, Kaya H K, et al. Insect pathogens as biological control agents: do they have a future [J] Biological Control, 2001, 21(3): 230-248.
[7] Hajek A. Natural enemies: an introduction to biological control [M]. Cambridge, UK: Cambridge University Press, 2004.
[8] Chandler D, Bailey A S, Tatchell G M, et al. The development, regulation and use of biopesticides for integrated pest management[J]. Philosophical Transactions of the Royal Society B, 2011, 366(1573): 1987-1998. doi: 10.1098/rstb.2010.0390
[9] 钟武洪, 张贤开, 雷绍清, 等. 竹卵圆蝽生物学特性及其天敌种类调查研究[J]. 湖南林业科技, 2005, 32(5):40-42. doi: 10.3969/j.issn.1003-5710.2005.05.013
[10] 郭 瑞, 何孙强, 王义平. 浙江省竹林害虫竹镂舟蛾和竹卵圆蝽的寄生蜂[J]. 环境昆虫学报, 2016, 38(3):476-481.
[11] 熊 琦, 谢映平, 薛皎亮, 等. 桃小食心虫病原真菌的研究及应用[M]. 北京: 中国农业科学技术出版社, 2015.
[12] Zimmermann G. Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii[J]. Biocontrol Science and Technology, 2007, 17(6): 553-596. doi: 10.1080/09583150701309006
[13] Ratnasingham S, Hebert P D N. BOLD: The Barcode of Life Data System (www. barcodinglife. org)[J]. Molecular Ecology Notes, 2007, 7(3): 355-364. doi: 10.1111/j.1471-8286.2007.01678.x
[14] 耿显胜, 陈奕洁, 石 坚, 等. 不同寄主竹种上竹瘿广肩小蜂生物学特性研究[J]. 应用昆虫学报, 2019, 56(2):220-226.
[15] Bellemain E, Carlsen T, Brochmann C, et al. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases[J]. BMC Microbiology, 2010, 10(1): 189. doi: 10.1186/1471-2180-10-189
[16] Schoch C L, Seifert K A, Huhndorf S, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi[J]. Proceedings of the National Academy of Sciences, 2012, 109(16): 6241-6246. doi: 10.1073/pnas.1117018109
[17] 林乃铨. 害虫生物防治[M]. 北京: 科学出版社, 2010.
[18] Lacey L A, Grzywacz D, Shapiro-Ilan D J, et al. Insect pathogens as biological control agents: back to the future[J]. Journal of Invertebrate Pathology, 2015, 132: 1-41. doi: 10.1016/j.jip.2015.07.009
[19] Mascarin G M, Jaronski S T. The production and uses of Beauveria bassiana as a microbial insecticide[J]. World Journal of Microbiology and Biotechnology, 2016, 32(11): 177. doi: 10.1007/s11274-016-2131-3
[20] Jaber L R, Ownley B H. Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens [J] Biological Control, 2017, 107: 50-59.
[21] Rehner S A, Minnis A M, Sung G H, et al. Phylogeny and systematics of the anamorphic, entomopathogenic genus Beauveria[J]. Mycologia, 2011, 103(5): 1055-1073. doi: 10.3852/10-302
[22] Valero-Jiménez C A, Debets A J M, van Kan J A L, et al. Natural variation in virulence of the entomopathogenic fungus Beauveria bassiana against malaria mosquitoes[J]. Malaria Journal, 2014, 13: 479. doi: 10.1186/1475-2875-13-479
[23] Corrêa B, Duarte V D S, Silva D M, et al. Comparative analysis of blastospore production and virulence of Beauveria bassiana and Cordyceps fumosorosea against soybean pests[J]. BioControl, 2020, 65(3): 323-337. doi: 10.1007/s10526-020-09999-6
[24] Jackson M A, Dunlap C A, Jaronski S T. Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol[J]. Biocontrol, 2010, 55(1): 129-145. doi: 10.1007/s10526-009-9240-y
[25] Jaronski S T. Ecological factors in the inundative use of fungal entomopathogens[J]. BioControl, 2010, 55(1): 159-185. doi: 10.1007/s10526-009-9248-3