[1] SILES J A, MARGESIN R. Abundance and diversity of bacterial, archaeal, and fungal communities along an altitudinal gradient in alpine forest soils: what are the driving factors?[J]. Microbial Ecology, 2016, 72(1): 207-220. doi: 10.1007/s00248-016-0748-2
[2] 王 莹, 王彦梅, 陈龙池. 湖南会同地区森林植被转变对土壤微生物生物量碳和酶活性的影响[J]. 生态学杂志, 2010, 29(5):905-909. doi: 10.13292/j.1000-4890.2010.0156
[3] 丁 波, 丁贵杰, 赵熙州, 等. 间伐对杉木人工林土壤酶活性及微生物的影响[J]. 林业科学研究, 2017, 30(6):1059-1065. doi: 10.13275/j.cnki.lykxyj.2017.06.025
[4] SHEN R C, XU M, CHI Y G, et al. Soil microbial responses to experimental warming and nitrogen addition in a temperate steppe of northern China[J]. Pedosphere, 2014, 24(4): 427-436. doi: 10.1016/S1002-0160(14)60029-1
[5] SHEN C C, LIANG W J, SHI Y, et al. Contrasting elevational diversity patterns between eukaryotic soil microbes and plants[J]. Ecology, 2014, 95(11): 3190-3202. doi: 10.1890/14-0310.1
[6] SHEN C C, NI Y Y, LIANG W J, et al. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra[J]. Frontiers in Microbiology, 2015, 6: 582.
[7] SINGH D, TAKAHASHI K, KIM M, et al. A hump-backed trend in bacterial diversity with elevation on mount Fuji, Japan[J]. Microbial Ecology, 2012, 63(02): 429-437. doi: 10.1007/s00248-011-9900-1
[8] SINGH D, LEE-CRUZ L, KIM W, et al. Strong elevational trends in soil bacterial community composition on mt. Halla, South Korea[J]. Soil Biology and Biochemistry, 2014, 68: 140-149. doi: 10.1016/j.soilbio.2013.09.027
[9] KOU Y P, LI C N, TU B, et al. The responses of ammonia-oxidizing microorganisms to different environmental factors determine their elevational distribution and assembly patterns[J]. Microbial Ecology, 2023, 86(1): 485-496. doi: 10.1007/s00248-022-02076-8
[10] CUI Y X, BING H J, FANG L C, et al. Diversity patterns of the rhizosphere and bulk soil microbial communities along an altitudinal gradient in an alpine ecosystem of the eastern Tibetan Plateau[J]. Geoderma, 2019, 338: 118-127. doi: 10.1016/j.geoderma.2018.11.047
[11] 贺 婧, 闫 冰, 李俊生, 等. 秦岭中段北坡不同海拔土壤中细菌群落的分布特征及区域差异比较[J]. 环境科学研究, 2019, 32(8):1374-1383. doi: 10.13198/j.issn.1001-6929.2019.01.12
[12] GREEN J, J M BOHANNAN B. Spatial scaling of microbial biodiversity[J]. Trends in Ecology & Evolution, 2006, 21(9): 501-507.
[13] 孙鸿烈. 中国资源科学百科全书[M]. 青岛: 中国石油大学出版社, 中国大百科全书出版社, 2000.
[14] HUANG K X, XIANG J, MA Y Y, et al. Response of soil microbial communities to elevation gradient in central subtropical Pinus taiwanensis and Pinus massoniana forests[J]. Forests, 2023, 14(4): 772. doi: 10.3390/f14040772
[15] LIU D P, ZHENG D X, XU Y Y, et al. Changes in the stoichiometry of Castanopsis fargesii along an elevation gradient in a Chinese subtropical forest[J]. PeerJ, 2021, 9(1): 11553.
[16] QIAO H Y, LUAN Y N, WANG B, et al. Analysis of spatiotemporal variations in the characteristics of soil microbial communities in Castanopsis fargesii forests[J]. Journal of Forestry Research, 2020, 31(5): 1975-1984. doi: 10.1007/s11676-019-00957-2
[17] SUN Y, HU H Q, HUANG H W, et al. Chloroplast diversity and population differentiation of Castanopsis fargesii (Fagaceae): a dominant tree species in evergreen broad-leaved forest of subtropical China[J]. Tree Genetics & Genomes, 2014, 10(6): 1531-1539.
[18] 林君漪, 张 豪, 柏雨萱, 等. 郭岩山不同海拔土壤养分对丝栗栲细根碳、氮、磷及其化学计量特征影响[J]. 江西农业大学学报, 2021, 43(6):1348-1356.
[19] 巩晟萱, 王 丹, 戴 伟, 等. 不同生长时期丝栗栲林下土壤有机碳含量及矿化特征[J]. 水土保持通报, 2015, 35(5):59-63. doi: 10.13961/j.cnki.stbctb.2015.05.077
[20] WANG Q, GAO C, GUO L D. Ectomycorrhizae associated with Castanopsis fargesii (Fagaceae) in a subtropical forest, China[J]. Mycological Progress, 2011, 10(3): 323-332. doi: 10.1007/s11557-010-0705-2
[21] 何冬梅, 陈逸飞, 苏 仪, 等. 郭岩山不同海拔天然栲树林土壤硅形态特征[J]. 林业科学研究, 2023, 36(2):153-160. doi: 10.12403/j.1001-1498.20220460
[22] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 14-111.
[23] RUIZ-GONZÁLEZ C, SALAZAR G, LOGARES R, et al. Weak coherence in abundance patterns between bacterial classes and their constituent otus along a regulated river[J]. Frontiers in Microbiology, 2015, 6(1): 1293.
[24] WALTERS W, HYDE E R, BERG-LYONS D, et al. Improved bacterial 16s rrna gene (v4 and v4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys[J]. Msystems, 2016, 1(1): e00009-15.
[25] 姚 兰, 胡立煌, 张焕朝, 等. 黄山土壤细菌群落和酶活性海拔分布特征[J]. 环境科学, 2019, 40(2):859-868. doi: 10.13227/j.hjkx.201806056
[26] 周煜杰, 贾 夏, 赵永华, 等. 秦岭火地塘真菌群落海拔分布格局[J]. 应用生态学报, 2021, 32(7):2589-2596. doi: 10.13287/j.1001-9332.202107.033
[27] 赵盼盼, 周嘉聪, 林开淼, 等. 海拔梯度变化对中亚热带黄山松土壤微生物生物量和群落结构的影响[J]. 生态学报, 2019, 39(6):2215-2225.
[28] MENG H, LI K, NIE M, et al. Responses of bacterial and fungal communities to an elevation gradient in a subtropical montane forest of China[J]. Applied Microbiology and Biotechnology, 2013, 97(5): 2219-2230. doi: 10.1007/s00253-012-4063-7
[29] 丛静. 神农架自然保护区土壤微生物多样性研究[D]. 长沙: 中南大学, 2013.
[30] HOLM BACH L, GRYTNES J, HALVORSEN R, et al. Tree influence on soil microbial community structure[J]. Soil Biology and Biochemistry, 2010, 42(11): 1934-1943. doi: 10.1016/j.soilbio.2010.07.002
[31] 杜 倩, 梁素钰, 李 琳, 等. 阔叶红松林土壤酶活性及微生物群落功能多样性分析[J]. 森林工程, 2019, 35(1):1-7 + 15. doi: 10.16270/j.cnki.slgc.2019.01.001
[32] ZHOU Y J, JIA X, HAN L, et al. Fungal community diversity in soils along an elevation gradient in a quercus aliena var. Acuteserrata forest in qinling mountains, China[J]. Applied Soil Ecology, 2021, 167: 104104. doi: 10.1016/j.apsoil.2021.104104
[33] 乔沙沙, 周永娜, 刘晋仙, 等. 关帝山针叶林土壤细菌群落结构特征[J]. 林业科学, 2017, 53(2):89-99.
[34] 林思诺, 苏延桂, 吕 坤, 等. 尖峰岭热带森林土壤真菌群落的海拔变化格局及驱动因素[J]. 应用生态学报, 2023, 34(2):349-358. doi: 10.13287/j.1001-9332.202302.033
[35] 李 聪, 吕晶花, 陆 梅, 等. 滇东南亚热带土壤细菌群落对植被垂直带变化的响应[J]. 生态环境学报, 2022, 31(10):1971-1983. doi: 10.16258/j.cnki.1674-5906.2022.10.005
[36] ZHAO Z Y, MA Y T, FENG T Y, et al. Assembly processes of abundant and rare microbial communities in orchard soil under a cover crop at different periods[J]. Geoderma, 2022, 406(15): 115543.
[37] YUAN Y L, SI G C, WANG J, et al. Bacterial community in alpine grasslands along an altitudinal gradient on the Tibetan Plateau[J]. Fems Microbiology Ecology, 2014, 87(1): 121-132. doi: 10.1111/1574-6941.12197
[38] MEIER C L, RAPP J, BOWERS R M, et al. Fungal growth on a common wood substrate across a tropical elevation gradient: temperature sensitivity, community composition, and potential for above-ground decomposition[J]. Soil Biology and Biochemistry, 2010, 42(7): 1083-1090. doi: 10.1016/j.soilbio.2010.03.005
[39] NAUD S, IBRAHIM A, VALLES C, et al. Candidate phyla radiation, an underappreciated division of the human microbiome, and its impact on health and disease[J]. Clinical Microbiology Reviews, 2022, 35(3): e0014021. doi: 10.1128/cmr.00140-21
[40] GUO G X, KONG W D, LIU J B, et al. Diversity and distribution of autotrophic microbial community along environmental gradients in grassland soils on the Tibetan Plateau[J]. Applied Microbiology and Biotechnology, 2015, 99(20): 8765-8776. doi: 10.1007/s00253-015-6723-x