[1] VANCE C P, UHDE-STONE C, ALLAN D L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource[J]. New Phytologist, 2003, 157(3): 423-447. doi: 10.1046/j.1469-8137.2003.00695.x
[2] TURNER B L, BRENES-ARGUEDAS T, CONDIT R. Pervasive phosphorus limitation of tree species but not communities in tropical forests[J]. Nature, 2018, 555: 367-370. doi: 10.1038/nature25789
[3] CROUS K Y, ÓSVALDSSON A, ELLSWORTH D S. Is phosphorus limiting in a mature Eucalyptus woodland? Phosphorus fertilisation stimulates stem growth[J]. Plant and Soil, 2015, 391(1-2): 293-305. doi: 10.1007/s11104-015-2426-4
[4] 赵 燕, 王 辉, 李吉跃. 氮、磷、钾对毛白杨幼苗光合生理的影响[J]. 西北林学院学报, 2015, 30(5):34-38 + 137.
[5] WRIGHT S J, TURNER B L, YAVITT J B, et al. Plant responses to fertilization experiments in lowland, species-rich, tropical forests[J]. Ecology, 2018, 99(5): 1129-1138. doi: 10.1002/ecy.2193
[6] HUANG W H, LIU J X, WANG Y P, et al. Increasing phosphorus limitation along three successional forests in southern China[J]. Plant and Soil, 2013, 364(1-2): 181-191. doi: 10.1007/s11104-012-1355-8
[7] VITOUSEK P M, FARRINGTON H. Nutrient limitation and soil development: experimental test of a biogeochemical theory[J]. Biogeochemistry, 1997, 37(1): 63-75. doi: 10.1023/A:1005757218475
[8] NEWBERY D M, CHUYONG G B, GREEN J J, et al. Does low phosphorus supply limit seedling establishment and tree growth in groves of ectomycorrhizal trees in a Central African rainforest?[J]. New Phytologist, 2002, 156(2): 297-311. doi: 10.1046/j.1469-8137.2002.00505.x
[9] WRIGHT S J, YAVITT J B, WURZBURGER N, et al. Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest[J]. Ecology, 2011, 92(8): 1616-1625. doi: 10.1890/10-1558.1
[10] ALVAREZ-CLARE S, MACK M C, BROOKS M. A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest[J]. Ecology, 2013, 94(7): 1540-1551. doi: 10.1890/12-2128.1
[11] 黄盛怡, 吴统贵, 楚秀丽, 等. 磷添加和接种菌根菌对马尾松不同家系容器苗的生长及磷素利用效应[J]. 林业科学研究, 2021, 34(5):142-151.
[12] 颜培栋, 李 鹏, 零天旺, 等. 马尾松不同家系施磷肥效应对比研究[J]. 广西林业科学, 2020, 49(2):168-174.
[13] 简尊吉, 倪妍妍, 徐 瑾, 等. 中国马尾松林土壤肥力特征[J]. 生态学报, 2021, 41(13):5279-5288.
[14] HUANG X, HUANG C B, TENG M J, et al. Net primary productivity of Pinus massoniana dependence on climate, soil and forest characteristics[J]. Forests, 2020, 11(4): 404. doi: 10.3390/f11040404
[15] NI Y Y, JIAN Z J, ZENG L X, et al. Climate, soil nutrients, and stand characteristics jointly determine large-scale patterns of biomass growth rates and allocation in Pinus massoniana plantations[J]. Forest Ecology and Management, 2022, 504: 119839. doi: 10.1016/j.foreco.2021.119839
[16] YU Z P, WANG M H, HUANG Z Q, et al. Temporal changes in soil C-N-P stoichiometry over the past 60 years across subtropical China[J]. Global Change Biology, 2017, 24(3): 1308-1320.
[17] 庞 丽, 周志春, 张 一, 等. 持续N沉降对低P下2年生马尾松苗木菌根共生影响[J]. 林业科学, 2016, 52(8):138-145.
[18] 徐向华, 丁贵杰. 马尾松适应低磷胁迫的生理生化响应[J]. 林业科学, 2006, 42(9):24-28.
[19] 简尊吉, 倪妍妍, 徐 瑾, 等. 马尾松人工林土壤碳氮磷生态化学计量学特征的纬度变化[J]. 林业科学研究, 2022, 35(2):1-8. doi: 10.13275/j.cnki.lykxyj.2022.02.001
[20] EPSTEIN E. Mineral Nutrition of Plants: Principles and Perspectives [M]. John Wiley and Sons, New York, 1972.
[21] GAO W Q, LIU J F, XUE Z M, et al. Geographical patterns and drivers of growth dynamics of Quercus variabilis[J]. Forest Ecology and Management, 2018, 429: 256-266. doi: 10.1016/j.foreco.2018.07.024
[22] WALKER A P, BECKERMAN A P, GU L H, et al. The relationship of leaf photosynthetic traits - Vcmax and Jmax - to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta-analysis and modeling study[J]. Ecology Evolution, 2014, 4(16): 3218-3235. doi: 10.1002/ece3.1173
[23] ELLSWORTH D S, CROUS K Y, LAMBERS H, et al. Phosphorus recycling in photorespiration maintains high photosynthetic capacity in woody species[J]. Plant, Cell & Environment, 2015, 38(6): 1142-1156.
[24] BAHAR N H A, ISHIDA F Y, Weerasinghe L K, et al. Leaf-level photosynthetic capacity in lowland Amazonian and high-elevation Andean tropical moist forests of Peru[J]. New Phytologist, 2017, 214(3): 1002-1018.
[25] NORBY R J, GU L H, HAWORTH I C, et al. Informing models through empirical relationships between foliar phosphorus, nitrogen and photosynthesis across diverse woody species in tropical forests of Panama[J]. New Phytologist, 2017, 215(4): 1425-1437. doi: 10.1111/nph.14319
[26] MO Q F, LI Z A, SAYER E J, et al. Foliar phosphorus fractions reveal how tropical plants maintain photosynthetic rates despite low soil phosphorus availability[J]. Functional Ecology, 2019, 33(3): 503-513. doi: 10.1111/1365-2435.13252
[27] VERRYCKT L T, VICCA S, VAN LANGENHOVE L, et al. Vertical profiles of leaf photosynthesis and leaf traits and soil nutrients in two tropical rainforests in French Guiana before and after a 3-year nitrogen and phosphorus addition experiment[J]. Earth System Science Data, 2022, 14(1): 5-18. doi: 10.5194/essd-14-5-2022
[28] PRIOR L D, EAMUS D, BOWMAN D M J S. Leaf attributes in the seasonally dry tropics: a comparison of four habitats in northern Australia[J]. Functional Ecology, 2003, 17(4): 504-515. doi: 10.1046/j.1365-2435.2003.00761.x
[29] SMITH N G, KEENAN T F; COLIN PRENTICE I, et al. Global photosynthetic capacity is optimized to the environment[J]. Ecology Letters, 2019, 22(3): 506-517. doi: 10.1111/ele.13210
[30] HIDAKA A, KITAYAMA K. Divergent patterns of photosynthetic phosphorus-use efficiency versus nitrogen-use efficiency of tree leaves along nutrient-availability gradients[J]. Journal of Ecology, 2009, 97(5): 984-991. doi: 10.1111/j.1365-2745.2009.01540.x
[31] WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985): 821-827. doi: 10.1038/nature02403
[32] PRENTICE I C, DONG N, GLEASON S M, et al. Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology[J]. Ecology Letters, 2014, 17(1): 82-91. doi: 10.1111/ele.12211
[33] WALKER T W, SYERS J K. The fate of phosphorus during pedogenesis[J]. Geoderma, 1976, 15(1): 1-19. doi: 10.1016/0016-7061(76)90066-5
[34] 姜春武, 徐 庆, 张蓓蓓, 等. 马尾松光合生理特性及资源利用效率研究进展[J]. 世界林业研究, 2017, 30(4):24-28. doi: 10.13348/j.cnki.sjlyyj.2017.0049.y
[35] JIANG M K, MEDLYN B E, DRAKE J E, et al. The fate of carbon in a mature forest under carbon dioxide enrichment[J]. Nature, 2020, 580: 227-231. doi: 10.1038/s41586-020-2128-9
[36] ELLSWORTH D, ANDERSON I, CROUS K, et al. Elevated CO2 does not increase eucalypt forest productivity on a low-phosphorus soil[J]. Nature Climate Change, 2017, 7: 279-282. doi: 10.1038/nclimate3235
[37] 孔 芬, 刘小勇, 王港振, 等. 施肥量对山地核桃光合与快速叶绿素荧光特性的影响[J]. 林业科学研究, 2016, 29(5):764-769. doi: 10.3969/j.issn.1001-1498.2016.05.020