[1] 杜 忠, 蔡小虎, 包维楷, 等. 林下层植被对上层乔木的影响研究综述[J]. 应用生态学报, 2016,27(11):963-972.
[2] Chen L M, Lei D, Man X L. Soil enzyme activities and plant diversity of undergrowth in spruce-fir forest[J]. Journal of Northeast Forestry University, 2009, 37(3): 58-61.
[3] 何艺玲, 傅懋毅. 人工林林下植被的研究现状[J]. 林业科学研究, 2002, 15(6):727-733. doi: 10.3321/j.issn:1001-1498.2002.06.015
[4] Qiao Y, Miao S, Silva L C R, et al. Understory species regulate litter decomposition and accumulation of C and N in forest soils: A long-term dual-isotope experiment[J]. Forest Ecology and Management, 2014, 329: 318-327. doi: 10.1016/j.foreco.2014.04.025
[5] Lin G G, Mao R, Zhao L, et al. Litter decomposition of a pine plantation is affected by species evenness and soil nitrogen availability[J]. Plant and Soil, 2013, 373(1-2): 649-657. doi: 10.1007/s11104-013-1832-8
[6] Tripathi S K, Muttineni R, Singh S K. Extra precision docking, free energy calculation and molecular dynamics simulation studies of CDK2 inhibitors[J]. Journal of Theoretical Biology, 2013, 334(23): 87-100.
[7] Tripathi S K, Sumida A, Ono K, et al. The effects of understorey dwarf bamboo (Sasa kurilensis) removal on soil fertility in a Betula ermanii forest of northern Japan[J]. Ecological Research, 2006, 21(2): 315-320. doi: 10.1007/s11284-005-0119-9
[8] Tripathi S K, Sumida A, Shibata H, et al. Growth and substrate quality of fine root and soil nitrogen availability in a young Betula ermanii forest of northern Japan: Effects of the removal of understory dwarf bamboo (Sasa kurilensis)[J]. Forest Ecology and Management, 2005, 212(1-3): 278-290. doi: 10.1016/j.foreco.2005.03.030
[9] Xiong Y M, Xia H P, Li Z A, et al. Impacts of litter and understory removal on soil properties in a subtropical Acacia mangium plantation in China[J]. Plant and Soil, 2008, 304: 179-188. doi: 10.1007/s11104-007-9536-6
[10] Zhao J, Wang X L, Shao Y H, et al. Effects of vegetation removal on soil properties and decomposer organisms[J]. Soil Biology and Biochemistry, 2011, 43(5): 954-960. doi: 10.1016/j.soilbio.2011.01.010
[11] Zornoza R, Guerrero C, Mataix-Solera J, et al. Assessing air-drying and rewetting pre-treatment effect on some soil enzyme activities under Mediterranean conditions[J]. Soil Biology and Biochemistry, 2006, 38(8): 2125-2134. doi: 10.1016/j.soilbio.2006.01.010
[12] Jha D K, Sharma G D, Mishra R R. Soil microbial population numbers and enzyme activities in relation to altitude and forest degradation[J]. Soil Biology and Biochemistry, 1992, 24(8): 761-767. doi: 10.1016/0038-0717(92)90250-2
[13] 杨万勤, 王开运. 森林土壤酶的研究进展[J]. 林业科学, 2004, 40(2):152-159. doi: 10.3321/j.issn:1001-7488.2004.02.027
[14] 颜路明, 郭祥泉. 盐碱胁迫对香樟幼苗根际土壤酶活性的影响[J]. 土壤, 2017, 49(4):733-737.
[15] Guolei L I, Yong L, Bei G, et al. Seasonal response of soil enzyme activity to thinning intensity of aerial seeded, stands[J]. Frontiers of Forestry in China, 2008, 3(3): 286-292. doi: 10.1007/s11461-008-0061-4
[16] 陈春林, 周国英, 吴 毅, 等. 湖南黄丰桥林场杉木速生丰产林健康评价[J]. 生态学杂志, 2012, 31(11):2872-2876.
[17] 国家林业局. 中国林业统计年鉴[M]. 北京: 中国林业出版社, 2013.
[18] 谭秀凤. 中国木材供需预测模型及发展趋势研究[D]. 北京: 中国林业科学研究院, 2011.
[19] 国家林业局. 中华人民共和国林业行业标准—森林土壤分析方法[M]. 北京: 中国标准出版社, 2000.
[20] 关松荫. 土壤酶及其研究方法[M]. 北京: 农业出版社, 1986: 1-151.
[21] 王长庭, 龙瑞军, 王根绪, 等. 高寒草甸群落地表植被特征与土壤理化性状和土壤微生物之间的相关性研究[J]. 草业学报, 2010, 19(6):25-34. doi: 10.11686/cyxb20100604
[22] Groffman P M, McDowell W H, Myers J C, et al. Soil microbial biomass and activity in tropical riparian forests[J]. Soil Biology and Biochemistry, 2001, 33(10): 1339-1348. doi: 10.1016/S0038-0717(01)00039-6
[23] Chapin Ⅲ F S. Nitrogen and phosphorus nutrition and nutrient cycling by evergreen and deciduous understory shrubs in an Alaskan black spruce forest[J]. Canadian Journal of Forest Research, 1983, 13(5): 773-781. doi: 10.1139/x83-107
[24] 傅静丹, 薛 立, 郑卫国, 等. 加勒比松凋落物对土壤性状的影响[J]. 林业科学研究, 2009, 22(2):303-307. doi: 10.3321/j.issn:1001-1498.2009.02.026
[25] 杨 洋, 王继富, 张心昱, 等. 凋落物和林下植被对杉木林土壤碳氮水解酶活性的影响机制[J]. 生态学报, 2016, 36(24):8102-8110.
[26] 郑琳琳, 赵 琼, 曾德慧. 林下植被去除对樟子松人工林土壤酶活性的影响[J]. 生态学杂志, 2017, 36(11):3056-3063.
[27] Kotroczó Z, Veres Z, István F, et al. Soil enzyme activity in response to long-term organic matter manipulation[J]. Soil Biology and Biochemistry, 2014, 70(2): 237-243.
[28] Liu Z, Wu J, Zhou L, et al. Effect of understory fern (Dicranopteris dichotoma) removal on substrate utilization patterns of culturable soil bacterial communities in subtropical Eucalyptus plantations[J]. Pedobiologia, 2012, 55(1): 7-13. doi: 10.1016/j.pedobi.2011.07.014
[29] Zhao J, Wan S, Li Z A, et al. Dicranopteris-dominated understory as major driver of intensive forest ecosystem in humid subtropical and tropical region[J]. Soil Biology and Biochemistry, 2012, 49: 78-87. doi: 10.1016/j.soilbio.2012.02.020
[30] Wu J, Liu Z, Wang X, et al. Effects of understory removal and tree girdling on soil microbial community composition and litter decomposition in two Eucalyptus plantations in South China[J]. Functional Ecology, 2011, 25(4): 921-931. doi: 10.1111/j.1365-2435.2011.01845.x
[31] 杨万勤, 钟章成, 陶建平, 等. 缙云山森林土壤酶活性与植物多样性的关系[J]. 林业科学, 2001, 37(4):124-128. doi: 10.3321/j.issn:1001-7488.2001.04.020
[32] 柴旭光. 油松不同林分组成对林地土壤酶活性的影响[J]. 防护林科技, 2016(4):32-33.
[33] 陈爱玲, 陈青山, 蔡丽萍. 杉木拟赤杨混交林土壤肥力的研究[J]. 土壤与环境, 2000, 9(4):284-286.
[34] Song Y, Song C, Yang G, et al. Changes in labile organic carbon fractions and soil enzyme activities after marshland reclamation and restoration in the Sanjiang plain in northeast China[J]. Environmental Management, 2012, 50(3): 418-426. doi: 10.1007/s00267-012-9890-x
[35] Chen X, Chen H Y H, Chen X, et al. Soil labile organic carbon and carbon-cycle enzyme activities under different thinning intensities in Chinese fir plantations[J]. Applied Soil Ecology, 2016, 107: 162-169. doi: 10.1016/j.apsoil.2016.05.016
[36] 胡海波, 张金池, 高智慧, 等. 岩质海岸防护林土壤微生物数量及其与酶活性和理化性质的关系[J]. 林业科学研究, 2002, 15(1):83-87. doi: 10.3321/j.issn:1001-1498.2002.01.013