[1] Morimoto K, Iwasaki A. Role of Monochamus alternatus (Coleoptera: Cerambycidae) as a vector of Bursaphelenchus lignicolus (Nematoda: Aphelenchoididae)[J]. Journal of the Japanese Forest Society, 1972, 54: 177-183.
[2] Zhao B G, Tao J, Ju Y W, et al. The role of wood-inhabiting bacteria in pine wilt disease[J]. Journal of Nematology, 2011, 43(3-4): 129-134.
[3] Vollenweider P, Günthardt-Goerg M S. Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage[J]. Environmental Pollution, 2006, 137(3): 455-465.
[4] 陶 欢, 李存军, 周静平, 等. 基于高分1号影像的森林植被信息提取[J]. 自然资源学报, 2018, 33(6):1068-1079.
[5] 武红敢, 常原飞. 高新技术在林业有害生物普查中的应用前景分析[J]. 中国森林病虫, 2014, 33(5):30-34. doi: 10.3969/j.issn.1671-0886.2014.05.009
[6] Carroll A L, Shore T L, Safranyik L. The mountain pine beetle: a synthesis of biology, management, and impacts on lodgepole pine[R]. Victoria, British Columbia: Natural Resources Canada, Canadian Forest Service (CFS), Pacific Forestry Centre, 2006: 155-172.
[7] Wulder M A, Dymond C C, White J C, et al. Surveying mountain pine beetle damage of forests: A review of remote sensing opportunities[J]. Forest Ecology and Management, 2006, 221: 27-41. doi: 10.1016/j.foreco.2005.09.021
[8] Zhao B G, Futai K, Sutherland J R, et al. Pine Wilt Disease[M]. Tokyo: Springer, 2008, 5-12.
[9] Fukuda K. Physiological process of the symptom development and resistance mechanism in pine wilt disease[J]. Journal of Forest Research, 1997, 2(3): 171-181. doi: 10.1007/BF02348216
[10] Ortiz S M, Breidenbach J, Kändler G. Early detection of bark beetle green attack using TerraSAR-X and RapidEye data[J]. Remote Sensing, 2013, 5(4): 1912-1931. doi: 10.3390/rs5041912
[11] Eitel J U H, Vierling L A, Litvak M E, et al. Broadband, red-edge information from satellites improves early stress detection in a New Mexico conifer woodland[J]. Remote Sensing of Environment, 2011, 115(12): 3640-3646. doi: 10.1016/j.rse.2011.09.002
[12] Roberts A, Dragicevic S, Northrup J, et al. Mountain pine beetle detection and monitoring: remote sensing evaluations[R]. Simon Fraser University: Forestry Innovation Investment Operational Research Report, 2003.
[13] Franklin S E, Wulder M A, Skakun R S, et al. Mountain pine beetle redattack damage classification using stratified Landsat TM data in British Columbia, Canada[J]. Photogrammetric Engineering and Remote Sensing, 2003, 69: 283-288. doi: 10.14358/PERS.69.3.283
[14] Wulder M A, White J C, Coops N C, et al. Multi-temporal analysis of high spatial resolution imagery for disturbance monitoring[J]. Remote Sensing of Environment, 2008, 112(6): 2729-2740. doi: 10.1016/j.rse.2008.01.010
[15] 申广荣, 王人潮. 植被光谱遥感数据的研究现状及其展望[J]. 浙江大学学报: 农业与生命科学版, 2001, 27(6):682-690.
[16] 杨宝君, 潘宏阳, 汤 坚, 等. 松材线虫病[M]. 北京: 中国林业出版社, 2003.
[17] 陆坎凯. 基于人工神经网络和高光谱数据的松材线虫病预测[D]. 杭州: 浙江农林大学, 2016.
[18] Ju Y, Pan J, Wang X, et al. Detection of bursaphelenchus xylophilus infection in pinus massoniana from hyperspectral data[J]. Nematology, 2014, 16(10): 1197-1207. doi: 10.1163/15685411-00002846
[19] Kim S R, Lee W K, Lim C H, et al. Hyperspectral analysis of pine wilt disease to determine an optimal detection index[J]. Forests, 2018, 9(115): 1-12.
[20] 黄明祥, 龚建华, 李 顺, 等. 松材线虫病害高光谱时序与敏感特征研究[J]. 遥感技术与应用, 2012, 27(6):954-960. doi: 10.11873/j.issn.1004-0323.2012.6.954
[21] 徐华潮, 骆有庆, 张廷廷, 等. 松材线虫自然侵染后松树不同感病阶段针叶光谱特征变化[J]. 光谱学与光谱分析, 2011, 31(5):1352-1356. doi: 10.3964/j.issn.1000-0593(2011)05-1352-05
[22] DB 34/T 2594-2016. 基于无人机平台的松材线虫病变色松树监测技术规程[S]. 合肥: 安徽省质量技术监督局. 2016.
[23] Wulder M A, White J C, Bentz B J, et al. Augmenting the existing survey hierarchy for mountain pine beetle red-attack damage with satellite remotely sensed data[J]. The Forestry Chronicle, 2006, 82(2): 187-202. doi: 10.5558/tfc82187-2
[24] Beck P, Zarco-Tejada P J, Strobl P, et al., The feasibility of detecting trees affected by the pine wood nematode using remote sensing[R]. Ispra, Italy: Publications Office of the European Union, 2015.
[25] 乔 睿, 唐 娉, 石 进, 等. World View-2影像的红叶松树识别研究[J]. 北京林业大学学报, 2015, 37(11):33-40.
[26] Dennison P E, Bruneller A R, Carter V A. Assessing canopy mortality during a mountain pine beetle outbreak using GeoEye-1 high spatial resolution satellite data[J]. Remote Sensing of Environment, 2010, 114(11): 2431-2435. doi: 10.1016/j.rse.2010.05.018
[27] Coops N C, Wulder M A, White J C. Integrating remotely sensed and ancillary data sources to characterize a mountain pine beetle infestation[J]. Remote Sensing of Environment, 2006, 105(2): 83-97. doi: 10.1016/j.rse.2006.06.007
[28] Wulder M A, White J C, Bentz B, et al. Estimating the probability of mountain pine beetle red-attack damage[J]. Remote Sensing of Environment, 2006, 101(2): 150-166. doi: 10.1016/j.rse.2005.12.010
[29] Skakun R S, Wulder M A, Franklin S E. Sensitivity of the thematic mapper enhanced wetness difference index to detect mountain pine beetle red-attack damage[J]. Remote Sensing of Environment, 2003, 86(4): 433-443. doi: 10.1016/S0034-4257(03)00112-3
[30] Wulder M A, White J C, Coops N C, et al. A procedure for mapping and monitoring mountain pine beetle red attack forest damage using Landsat imagery[R]. Victoria, British Columbia: Natural Resources Canada, Canadian Forest Service (CFS), Pacific Forestry Centre. 2006: 1-28.
[31] Meddens A J, Hicke J A, Vierling L A, et al. Evaluating methods to detect bark beetle-caused tree mortality using single-date and multi-date Landsat imagery[J]. Remote Sensing of Environment, 2013, 132: 49-58. doi: 10.1016/j.rse.2013.01.002
[32] White J C, Wulder M A, Brooks D, et al. Detection of red attack stage mountain pine beetle infestation with high spatial resolution satellite imagery[J]. Remote Sensing of Environment, 2005, 96(3-4): 340-51. doi: 10.1016/j.rse.2005.03.007
[33] Hicke J A, Logan J. Mapping whitebark pine mortality caused by a mountain pine beetle outbreak with high spatial resolution satellite imagery[J]. International Journal of Remote Sensing, 2009, 30(17): 4427-4441. doi: 10.1080/01431160802566439
[34] White J C, Wulder M A, Grills D. Detecting and mapping mountain pine beetle red-attack damage with SPOT-5 10-m multispectral imagery[J]. BC Journal of Ecosystems and Management, 2006, 7(2): 105-118.
[35] Sharma R. Detection of mountain pine beetle infestations using Landsat TM Tasseled Cap Transformations[D]. Vancouver: University of British Columbia, 2001.
[36] White J C, Coops N C, Hilker T, et al. Detecting mountain pine beetle red attack damage with EO-1 hyperion moisture indices[J]. International Journal of Remote Sensing, 2007, 28(10): 2111-2121. doi: 10.1080/01431160600944028
[37] Poona N K, Ismail R. Discriminating the occurrence of pitch canker infection in pinus radiation forests using high spatial resolution QuickBird data and Artificial Neural Networks[J]. 2012 IEEE International Geoscience and remote sensing Symposium, 2012: 3371-3374.
[38] Hellesen T, Matikainen L. An object-based approach for mapping shrub and tree cover on grassland habitats by use of LiDAR and CIR orthoimages[J]. Remote Sensing, 2013, 5(2): 558-583. doi: 10.3390/rs5020558
[39] Guo Q, Kelly M, Gong P, et al. An object-based classification approach in mapping tree morality using high spatial resolution imagery[J]. GIScience & Remote sensing, 2007, 44(1): 24-47.
[40] Johnson B A, Ryutaro T, Thanhhoan N. A hybrid pansharpening approach and multiscale object-based image analysis for mapping diseased pine and oak trees[J]. International Journal of Remote Sensing, 2013, 34(20): 6969-6982. doi: 10.1080/01431161.2013.810825
[41] Zhang L, Zhang L, Bo D. Deep learning for remote sensing data: a technical tutorial on the state of the art[J]. IEEE Geoscience & Remote Sensing Magazine, 2016, 4(2): 22-40.
[42] Cheng G, Han J. A survey on object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117: 11-28. doi: 10.1016/j.isprsjprs.2016.03.014
[43] Zhang J, Zhong P, Chen Y, et al. L1/2-regularized deconvolution network for the representation and restoration of optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2617-2627. doi: 10.1109/TGRS.2013.2263933
[44] Huang W, Xiao L, Wei Z, et al. A new pan-sharpening method with deep neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5): 1037-1041. doi: 10.1109/LGRS.2014.2376034
[45] Ren Y, Zhu C, Xiao S. Small object detection in optical remote sensing images via modified faster R-CNN[J]. Applied Sciences, 2018, 8(5): 813-824. doi: 10.3390/app8050813
[46] Reichstein M, Gamps-Valls G, Stevens B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566: 195-204. doi: 10.1038/s41586-019-0912-1
[47] Yang C, Li W, Lin Z. Vehicle object detection in remote sensing imagery based on multi-perspective convolutional neural Network[J]. ISPRS International Journal of Geo-Information, 2018, 7(7): 249. doi: 10.3390/ijgi7070249
[48] 王慧芳, 顾晓鹤, 董莹莹, 等. 冬小麦冻害灾情及长势恢复的变化向量分析[J]. 农业工程学报, 2011, 27(11):145-150. doi: 10.3969/j.issn.1002-6819.2011.11.028
[49] 王 堃, 顾晓鹤, 程耀东, 等. 基于变化向量分析的玉米收获期遥感监测[J]. 农业工程学报, 2011, 27(02):180-186.
[50] Xue J, Su B. Significant remote sensing vegetation indices: a review of developments and applications[J]. Journal of Sensors, 2017, 1: 1-17.
[51] Gašparović M, Jurjević L. Gimbal influence on the stability of exterior orientation parameters of UAV acquired images[J]. Sensors, 2017, 17(2): 401. doi: 10.3390/s17020401
[52] 晏 磊, 廖小罕, 周成虎, 等. 中国无人机遥感技术突破与产业发展综述[J]. 地 球信息科学学报, 2019, 21(04):476-495.
[53] 吕晓君, 王 君, 喻卫国, 等. 无人机监测林业有害生物初探[J]. 湖北林业科技, 2016, 45(4):30-33. doi: 10.3969/j.issn.1004-3020.2016.04.008
[54] 李卫正, 申世广, 何 鹏, 等. 低成本小型无人机遥感定位病死木方法[J]. 林业科技开发, 2014, 28(6):102-106.
[55] Klein W H. Beetle-killed pine estimates[J]. Photogrammetric Engineering, 1973, 39(4): 385-388.
[56] 陶 欢, 李存军, 谢春春, 等. 基于HSV阈值法的无人机影像变色松树识别[J]. 南京林业大学学报: 自然科学版, 2019, 43(3):99-106.
[57] 胡根生, 张学敏, 梁 栋, 等. 基于加权支持向量数据描述的遥感图像病害松树识别[J]. 农业机械学报, 2013, 44(5):258-263. doi: 10.6041/j.issn.1000-1298.2013.05.045
[58] 张学敏. 基于支持向量数据描述的遥感图像病害松树识别研究[D]. 合肥: 安徽大学, 2014.
[59] Pasher J, King D J. Mapping dead wood distribution in a temperate hardwood forest using high resolution airborne imagery[J]. Forest Ecology and Management, 2009, 258(7): 1536-1548. doi: 10.1016/j.foreco.2009.07.009
[60] 王成波. 面向松材线虫病监测的无人机影像变色松树提取与地面调查综合技术研究[D]. 北京: 中国科学院大学, 2014.
[61] 吴 琼. 基于遥感图像的松材线虫病区域检测算法研究[D]. 合肥: 安徽大学, 2013.
[62] Tao L, Abdelrahman A, Morton J, et al. Comparing fully convolutional networks, random forest, support vector machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small unmanned aircraft system[J]. GIScience & Remote Sensing, 2018, 55(2): 243-264.
[63] Zhang J, Lin X, Liu Z, et al. Semi-automatic road tracking by template matching and distance transformation in urban areas[J]. International Journal of Remote Sensing, 2011, 32(23): 8331-8347. doi: 10.1080/01431161.2010.540587
[64] Martha T R, Kerle N, Westen C J V, et al. Segment optimization and data-driven thresholding for knowledge-based landslide detection by object-based image analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(12): 4928-4943. doi: 10.1109/TGRS.2011.2151866
[65] Ming D, Li J, Wang J, et al. Scale parameter selection by spatial statistics for GeOBIA: Using mean-shift based multi-scale segmentation as an example[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 106: 28-41. doi: 10.1016/j.isprsjprs.2015.04.010
[66] Yao X, Han J, Guo L, et al. A coarse-to-fine model for airport detection from remote sensing images using target-oriented visual saliency and CRF[J]. Neurocomputing, 2015, 164: 162-172. doi: 10.1016/j.neucom.2015.02.073
[67] Li E, Femiani J, Xu S, et al. Robust rooftop extraction from visible band images using higher order CRF[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8): 4483-4495. doi: 10.1109/TGRS.2015.2400462
[68] Chen F, Ren R, Van de Voorde T, et al. Fast automatic airport detection in remote sensing images using convolutional neural networks[J]. Remote Sensing, 2018, 10(3): 443. doi: 10.3390/rs10030443
[69] Tan Y, Xiong S, Li Y. Automatic extraction of built-up areas from panchromatic and multispectral remote sensing images using double-stream deep convolutional neural networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 3988-4004. doi: 10.1109/JSTARS.2018.2871046
[70] Santoso H, Tani H, Wang X. A simple method for detection and counting of oil palm trees using high-resolution multispectral satellite imagery[J]. International Journal of Remote Sensing, 2016, 37(21): 5122-5134. doi: 10.1080/01431161.2016.1226527
[71] Näsi R, Honkavaara E, Lyytikäinen-Saarenmaa P, et al. Using UAV-based photogrammetry and hyperspectral imaging for mapping bark beetle damage at tree-level[J]. Remote Sensing, 2015, 7(11): 15467-15493. doi: 10.3390/rs71115467
[72] Leckie, D G, Yuan, X, Ostaff, D P, et al. Analysis of high resolution multispectral MEIS imagery for spruce budworm damage assessment on a single tree basis[J]. Remote Sensing of Environment, 1992, 40: 125-136. doi: 10.1016/0034-4257(92)90010-H
[73] Coops N, Stanford M, Old K, et al. Assessment of dothistroma needle blight of pinus radiata using airborne hyperspectral imagery[J]. Phytopathology, 2003, 93: 1524-1532. doi: 10.1094/PHYTO.2003.93.12.1524
[74] Fassnacht F E, Latifi H, Ghosh A, et al. Assessing the potential of hyperspectral imagery to map bark beetle-induced tree mortality[J]. Remote Sensing of Environment, 2014, 140(1): 533-548.
[75] Zhang N, Zhang X, Yang G, et al. Assessment of defoliation during the Dendrolimus tabulaeformis Tsai et Liu disaster outbreak using UAV-based hyperspectral images[J]. Remote Sensing of Environment, 2018, 217: 323-339. doi: 10.1016/j.rse.2018.08.024
[76] Zhu X X, Tuia D, Mou L, et al. Deep learning in remote sensing: a comprehensive review and list of resources[J]. IEEE Geoscience & Remote Sensing Magazine, 2018, 5(4): 8-36.
[77] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. doi: 10.1126/science.1127647
[78] Lee S H, Cho H K, Lee W K. Detection of the pine trees damaged by pine wilt disease using high resolution satellite and airborne optical imagery[J]. Korean Journal of Remote Sensing, 2007, 23(5): 409-20.
[79] Kamata N. Integrated pest management of pine wilt disease in Japan: tactics and strategies[C]// Pine Wilt Disease. 2008: 304-322.
[80] 邓世晴, 陶 欢, 李存军, 等. 不同地形校正方法对黑松分布遥感提取的影响[J]. 林业资源管理, 2018, 6:138-145.
[81] GB/T 23478-2009. 松材线虫普查监测技术规程[S]. 中华人民共和国国家质量监督检验检疫总局, 北京: 中国国家标准化管理委员会, 2009.