[1] Tang X, Li Q, Wu M, et al. Review of remediation practices regarding cadmium-enriched farmland soil with particular reference to China[J]. Journal of Environmental Management, 2016, 181: 646-662. doi: 10.1016/j.jenvman.2016.08.043
[2] Chaparro Leal L T, Guney M, Zagury G J. In vitro dermal bioaccessibility of selected metals in contaminated soil and mine tailings and human health risk characterization[J]. Chemosphere, 2018, 197: 42-49. doi: 10.1016/j.chemosphere.2018.01.008
[3] Ali H, Khan E, Sajad M A. Phytoremediation of heavy metals--concepts and applications[J]. Chemosphere, 2013, 91(7): 869-881. doi: 10.1016/j.chemosphere.2013.01.075
[4] Li J T, Gurajala H K, Wu L H, et al. Hyperaccumulator plants from China: a synthesis of the current state of knowledge[J]. Environmental Science & Technology, 2018, 52(21): 11980-11994.
[5] Deng D M, Deng J C, Li J T, et al. Accumulation of zinc, cadmium, and lead in four populations of Sedum alfredii growing on lead/zinc mine spoils[J]. Journal of Integrative Plant Biology, 2008, 50(6): 691-698. doi: 10.1111/j.1744-7909.2008.00669.x
[6] Tian S, Lu L, Labavitch J, et al. Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii[J]. Plant Physiology, 2011, 157(4): 1914-1925. doi: 10.1104/pp.111.183947
[7] Tao Q, Jupa R, Luo J, et al. The apoplasmic pathway via the root apex and lateral roots contributes to Cd hyperaccumulation in the hyperaccumulator Sedum alfredii[J]. Journal of Experimental Botany, 2017, 68(3): 739-751.
[8] Liu M, He X, Feng T, et al. cDNA Library for mining functional genes in Sedum alfredii Hance related to cadmium tolerance and characterization of the roles of a novel SaCTP2 gene in enhancing cadmium hyperaccumulation[J]. Environmental Science & Technology, 2019, 53(18): 10926-10940.
[9] Tian S, Xie R, Wang H, et al. Uptake, sequestration and tolerance of cadmium at cellular levels in the hyperaccumulator plant species Sedum alfredii[J]. Journal of Experimental Botany, 2017, 68(9): 2387-2398. doi: 10.1093/jxb/erx112
[10] Conte S S, Walker E L. Transporters contributing to iron trafficking in plants[J]. Molecular Plant, 2011, 4(3): 464-476. doi: 10.1093/mp/ssr015
[11] Zhang J, Zhang M, Shohag M J, et al. Enhanced expression of SaHMA3 plays critical roles in Cd hyperaccumulation and hypertolerance in Cd hyperaccumulator Sedum alfredii Hance[J]. Planta, 2016, 243(3): 577-589. doi: 10.1007/s00425-015-2429-7
[12] Feng Y, Wu Y, Zhang J, et al. Ectopic expression of SaNRAMP3 from Sedum alfredii enhanced cadmium root-to-shoot transport in Brassica juncea[J]. Ecotoxicology and Environmental Safety, 2018, 156: 279-286. doi: 10.1016/j.ecoenv.2018.03.031
[13] Chen S, Han X, Fang J, et al. Sedum alfredii SaNramp6 metal transporter contributes to Cadmium accumulation in transgenic Arabidopsis thaliana[J]. Scientific Reports, 2017, 7(1): 13318. doi: 10.1038/s41598-017-13463-4
[14] Zhang M, Senoura T, Yang X, et al. Functional analysis of metal tolerance proteins isolated from Zn/Cd hyperaccumulating ecotype and non-hyperaccumulating ecotype of Sedum alfredii Hance[J]. FEBS Letters, 2011, 585(16): 2604-2609. doi: 10.1016/j.febslet.2011.07.013
[15] Yang Q Y, Ma X X, Luo S, et al. SaZIP4, an uptake transporter of Zn/Cd hyperaccumulator Sedum alfredii Hance[J]. Environmental and Experimental Botany, 2018, 155: 107-117. doi: 10.1016/j.envexpbot.2018.06.021
[16] Zhang M, Zhang J, Lu L L, et al. Functional analysis of CAX2-like transporters isolated from two ecotypes of Sedum alfredii[J]. Biologia Plantarum, 2016, 60(1): 37-47. doi: 10.1007/s10535-015-0557-3
[17] Beis K. Structural basis for the mechanism of ABC transporters[J]. Biochem Soc Trans, 2015, 43(5): 889-893. doi: 10.1042/BST20150047
[18] Dean M, Hamon Y G C. The human ATP-binding cassette (ABC) transporter superfamily[J]. J Lipid Res, 2001, 42(7): 1007-1017.
[19] Kumari S, Kumar M, Khandelwal N K, et al. ABC transportome inventory of human pathogenic yeast Candida glabrata: Phylogenetic and expression analysis[J]. Plos One, 2018, 13(8): e0202993. doi: 10.1371/journal.pone.0202993
[20] Cakir B, Kilickaya O. Whole-genome survey of the putative ATP-binding cassette transporter family genes in Vitis vinifera[J]. Plos One, 2013, 8(11): e78860. doi: 10.1371/journal.pone.0078860
[21] Cho M, Cho H T. The function of ABCB transporters in auxin transport[J]. Plant Signaling & Behavior, 2013, 8(2): e22990.
[22] da Costa K M, Valente R C, Salustiano E J, et al. Functional characterization of ABCC proteins from Trypanosoma cruzi and their involvement with thiol transport[J]. Frontiers in Microbiology, 2018, 9: 205. doi: 10.3389/fmicb.2018.00205
[23] Park J, Song W Y, Ko D, et al. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury[J]. The Plant Journal, 2012, 69(2): 278-288. doi: 10.1111/j.1365-313X.2011.04789.x
[24] Nagy R, Grob H, Weder B, et al. The Arabidopsis ATP-binding cassette protein AtMRP5/AtABCC5 is a high affinity inositol hexakisphosphate transporter involved in guard cell signaling and phytate storage[J]. The Journal of Biological Chemistry, 2009, 284(48): 33614-33622. doi: 10.1074/jbc.M109.030247
[25] Gu X, Manautou J E. Regulation of hepatic ABCC transporters by xenobiotics and in disease states[J]. Drug Metab Rev, 2010, 42(3): 482-538. doi: 10.3109/03602531003654915
[26] Chen S S, Jiang J, Han X J, et al. Identification, expression analysis of the Hsf family, and characterization of Class A4 in Sedum alfredii Hance under cadmium stress[J]. International Journal of Molecular Sciences, 2018, 19(4): 1216. doi: 10.3390/ijms19041216
[27] Han X, Yin H, Song X, et al. Integration of small RNAs, degradome and transcriptome sequencing in hyperaccumulator Sedum alfredii uncovers a complex regulatory network and provides insights into cadmium phytoremediation[J]. Plant Biotechnology Journal, 2016, 14(6): 1470-1483. doi: 10.1111/pbi.12512
[28] Sang J, Han X, Liu M, et al. Selection and validation of reference genes for Real-Time Quantitative PCR in hyperaccumulating ecotype of Sedum alfredii under different heavy metals stresses[J]. Plos One, 2013, 8(12): e82927. doi: 10.1371/journal.pone.0082927
[29] Liu M, Jiang J, Han X, et al. Validation of reference genes aiming accurate normalization of qRT-PCR data in Dendrocalamus latiflorus Munro[J]. Plos One, 2014, 9(2): e87417. doi: 10.1371/journal.pone.0087417
[30] 刘明英, 乔桂荣, 蒋 晶, 等. 矿山型东南景天cDNA表达文库构建与耐镉基因筛选[J]. 林业科学研究, 2012, 25(3):332-338. doi: 10.3969/j.issn.1001-1498.2012.03.010
[31] Aryal B, Laurent C, Geisler M. Correction: Learning from each other: ABC transporter regulation by protein phosphorylation in plant and mammalian systems[J]. Biochem Soc Trans, 2016, 44(2): 663-673. doi: 10.1042/BST20150128_2
[32] Lane T S, Rempe C S, Davitt J, et al. Diversity of ABC transporter genes across the plant kingdom and their potential utility in biotechnology[J]. BMC Biotechnol, 2016, 16(1): 47. doi: 10.1186/s12896-016-0277-6
[33] Lu Y P, Li Z S, Rea P A. AtMRP1 gene of Arabidopsis encodes a glutathione S-conjugate pump: isolation and functional definition of a plant ATP-binding cassette transporter gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(15): 8243-8248. doi: 10.1073/pnas.94.15.8243
[34] Suh S J, Wang Y F, Frelet A, et al. The ATP binding cassette transporter AtMRP5 modulates anion and calcium channel activities in Arabidopsis guard cells[J]. The Journal of Biological Chemistry, 2007, 282(3): 1916-1924. doi: 10.1074/jbc.M607926200
[35] Lee E K, Kwon M, Ko J H, et al. Binding of sulfonylurea by AtMRP5, an Arabidopsis multidrug resistance-related protein that functions in salt tolerance[J]. Plant Physiology, 2004, 134(1): 528-538. doi: 10.1104/pp.103.027045
[36] Badri D V, Loyola-Vargas V M, Broeckling C D, et al. Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette transporter mutants[J]. Plant Physiology, 2008, 146(2): 762-771. doi: 10.1104/pp.107.109587
[37] Baker A, Carrier D J, Schaedler T, et al. Peroxisomal ABC transporters: functions and mechanism[J]. Biochem Soc Trans, 2015, 43(5): 959-965. doi: 10.1042/BST20150127
[38] Gao J, Sun L, Yang X, et al. Transcriptomic analysis of cadmium stress response in the heavy metal hyperaccumulator Sedum alfredii Hance[J]. Plos One, 2014, 8(6): e64643.
[39] Halimaa P, Lin Y F, Ahonen V H, et al. Gene expression differences between Noccaea caerulescens ecotypes help to identify candidate genes for metal phytoremediation[J]. Environmental Science & Technology, 2014, 48(6): 3344-3353.
[40] Klein M, Geisler M, Suh S J, et al. Disruption of AtMRP4, a guard cell plasma membrane ABCC-type ABC transporter, leads to deregulation of stomatal opening and increased drought susceptibility[J]. The Plant Journal, 2004, 39(2): 219-236. doi: 10.1111/j.1365-313X.2004.02125.x
[41] Gaillard S, Jacquet H, Vavasseur A, et al. AtMRP6/AtABCC6, an ATP-binding cassette transporter gene expressed during early steps of seedling development and up-regulated by cadmium in Arabidopsis thaliana[J]. BMC Plant Biology, 2008, 8: 22. doi: 10.1186/1471-2229-8-22
[42] Ubrihien R P, Ezaz T, Taylor A M, et al. The response of Isidorella newcombi to copper exposure: Using an integrated biological framework to interpret transcriptomic responses from RNA-seq analysis[J]. Aquatic Toxicology, 2017, 185: 183-192. doi: 10.1016/j.aquatox.2017.02.014