[1] 马雪俊. 杨树主要病虫害的种类、为害及防治[J]. 种子科技, 2022, 40(17):99-101.
[2] YUAN M H, NGOU B P M, DING P T, et al. PTI-ETI crosstalk: an integrative view of plant immunity[J]. Current Opinion in Plant Biology, 2021, 62: 102030. doi: 10.1016/j.pbi.2021.102030
[3] YUAN M H, JIANG Z Y, BI G Z, et al. Pattern-recognition receptors are required for NLR-mediated plant immunity[J]. Nature, 2021, 592(7852): 105-109. doi: 10.1038/s41586-021-03316-6
[4] SHANG-GUAN K K, WANG M, HTWE N M P S, et al. Lipopolysaccharides trigger two successive bursts of reactive oxygen species at distinct cellular locations[J]. Plant Physiology, 2018, 176(3): 2543-2556. doi: 10.1104/pp.17.01637
[5] SU Y Y, LI H G, WANG Y L, et al. Poplar miR472a targeting NBS-LRRs is involved in effective defence against the necrotrophic fungus Cytospora chrysosperma[J]. Journal of Experimental Botany, 2018, 69(22): 5519-5530.
[6] 田呈明, 梁英梅, 康振生, 等. 杨树与栅锈菌互作的细胞学研究[J]. 林业科学, 2002, 38(3):87-93.
[7] ULLAH C, TSAI C J, UNSICKER S B, et al. Salicylic acid activates poplar defense against the biotrophic rust fungus Melampsora larici-populina via increased biosynthesis of catechin and proanthocyanidins[J]. New Phytologist, 2018, 221(2): 960-975.
[8] DANG F F, LIN J H, LI Y J, et al. SlWRKY30 and SlWRKY81 synergistically modulate tomato immunity to Ralstonia solanacearum by directly regulating SlPR-STH2[J]. Horticulture Research, 2023, 10(5): uhad050. doi: 10.1093/hr/uhad050
[9] SHIMIZU K, SUZUKI H, UEMURA T, et al. Immune gene activation by NPR and TGA transcriptional regulators in the model monocot Brachypodium distachyon[J]. The Plant Journal, 2022, 110(2): 470-481. doi: 10.1111/tpj.15681
[10] YANG Y L, LI H G, LIU M Y, et al. PeTGA1 enhances disease resistance against Colletotrichum gloeosporioides through directly regulating PeSARD1 in poplar[J]. International Journal of Biological Macromolecules, 2022, 214: 672-684. doi: 10.1016/j.ijbiomac.2022.06.099
[11] YE S L, JIANG Y Z, DUAN Y J, et al. Constitutive expression of the poplar WRKY transcription factor PtoWRKY60 enhances resistance to Dothiorella gregaria Sacc. in transgenic plants[J]. Tree Physiology, 2014, 34(10): 1118-1129. doi: 10.1093/treephys/tpu079
[12] 李伶俐, 韩正敏, 吕明亮, 等. 苏北地区杨树枯萎病病原菌的鉴定[C]. 江苏省植物病理学会. 第十一次会员代表大会暨学术研讨会, 中国江苏扬州, F, 2008 .
[13] HAN M, XU X L, LI X, et al. New Insight into Aspartate Metabolic Pathways in Populus: Linking the Root Responsive Isoenzymes with Amino Acid Biosynthesis during Incompatible Interactions of Fusarium solani[J]. International Journal of Molecular Sciences, 2022, 23(12): 6368. doi: 10.3390/ijms23126368
[14] 叶小真, 杨泽慧, 张清华, 等. 桉树枯萎病菌Fusarium solani分子检测技术研究[J]. 森林与环境学报, 2019, 39(6):629-635.
[15] Vettraino A M, Shrestha G P, Vannini A. First Report of Fusarium solani Causing Wilt of Olea europaea in Nepal[J]. Plant Disease, 2009, 93(2): 200.
[16] 王新荣 李 楠, 林月娥, 等. 苏铁镰刀菌球茎腐烂病化学防治技术研究[J]. 中国森林病虫, 2005, 24(6):34-37.
[17] 陈世荣, 王建华, 储祥宏, 等. 杨树枯萎病的发生与防治初探[J]. 江苏林业科技, 2013, 40(4):31-33.
[18] CHEN L Q, HOU B H, LALONDE S, et al. Sugar transporters for intercellular exchange and nutrition of pathogens[J]. Nature, 2010, 468(7323): 527-532. doi: 10.1038/nature09606
[19] ZHANG L, WANG L J, ZHANG J, et al. Expression and localization of SWEETs in Populus and the effect of SWEET7 overexpression in secondary growth[J]. Tree Physiology, 2021, 41(5): 882-899. doi: 10.1093/treephys/tpaa145
[20] 游 昕. 茄镰孢菌(Fusarium solani)对欧美杨细菌性溃疡病发生的影响分析 [D]. 北京: 北京林业大学, 2013.
[21] ROLLAND F, BAENA-GONZALEZ E, SHEEN J. SUGAR SENSING AND SIGNALING IN PLANTS: Conserved and Novel Mechanisms[J]. Annual Review of Plant Biology, 2006, 57(1): 675-709. doi: 10.1146/annurev.arplant.57.032905.105441
[22] LEMONNIER P, GAILLARD C, VEILLET F, et al. Expression of Arabidopsis sugar transport protein STP13 differentially affects glucose transport activity and basal resistance to Botrytis cinerea[J]. Plant Molecular Biology, 2014, 85(4-5): 473-484. doi: 10.1007/s11103-014-0198-5
[23] CHEN H Y, HUH J H, YU Y C, et al. The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection[J]. The Plant Journal, 2015, 83(6): 1046-1058. doi: 10.1111/tpj.12948
[24] CHEN J J, PIAO Y L, LIU Y M, et al. Genome-wide identification and expression analysis of chitinase gene family in Brassica rapa reveals its role in clubroot resistance[J]. Plant Science, 2018, 270: 257-267. doi: 10.1016/j.plantsci.2018.02.017
[25] SUN M X, ZHANG Z Q, REN Z Y, et al. The GhSWEET42 glucose transporter participates in Verticillium dahliae infection in cotton[J]. Frontiers in Plant Science, 2021, 12: 690754. doi: 10.3389/fpls.2021.690754
[26] ROBERT-SEILANIANTZ A, GRANT M, JONES J D G. Hormone crosstalk in plant disease and defense: more than just JASMONATE-SALICYLATE antagonism[J]. Annual Review of Phytopathology, 2011, 49(1): 317-343. doi: 10.1146/annurev-phyto-073009-114447
[27] BARI R, JONES J D G. Role of plant hormones in plant defence responses[J]. Plant Molecular Biology, 2008, 69(4): 473-488.
[28] 赵光栋. GhbHLH122影响乙烯的生物合成进而调控棉花对枯萎病抗性的分子机制研究 [D]. 泰安: 山东农业大学, 2022.
[29] GUO W F, JIN L, MIAO Y H, et al. An ethylene response-related factor, GbERF1-like, from Gossypium barbadense improves resistance to Verticillium dahliae via activating lignin synthesis[J]. Plant Molecular Biology, 2016, 91(3): 305-318. doi: 10.1007/s11103-016-0467-6
[30] HELLIWELL E E, WANG Q, YANG Y N. Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani[J]. Plant Biotechnology Journal, 2012, 11(1): 33-42.
[31] DI X T, GOMILA J, TAKKEN F L W. Involvement of salicylic acid, ethylene and jasmonic acid signalling pathways in the susceptibility of tomato to Fusarium oxysporum[J]. Molecular Plant Pathology, 2017, 18(7): 1024-1035. doi: 10.1111/mpp.12559
[32] LATTANZINO V, LATTANZINO V M T, CARDINALI A. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects[J]. phytochemistry, 2006, 37(2): 23-67.
[33] DONG N Q, LIN H X. Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions[J]. Journal of Integrative Plant Biology, 2021, 63(1): 180-209. doi: 10.1111/jipb.13054
[34] 王硕. 西瓜枯萎病抗性反应中苯丙烷代谢及关键基因Cl4CL的克隆 [D]. 保定: 河北农业大学, 2021.
[35] MANOELA M, G. RALPH S, MELLWAY R, et al. The transcriptional response of hybrid poplar (Populus trichocarpa x P. deltoides) to infection by Melampsora medusae leaf rust involves induction of flavonoid pathway genes leading to the accumulation of proanthocyanidins[J]. Molecular plant-microbe interactions:MPMI, 2007, 20(7): 816-831. doi: 10.1094/MPMI-20-7-0816
[36] UMEZAWA T. The cinnamate/monolignol pathway[J]. Phytochemistry Reviews, 2009, 9(1): 1-17.
[37] LIU C, YU H S, VOXEUR A, et al. FERONIA and wall-associated kinases coordinate defense induced by lignin modification in plant cell walls[J]. Science advances, 2023, 9(10): eadf7714. doi: 10.1126/sciadv.adf7714
[38] 胡景江 朱 玮, 文建雷. 杨树细胞壁HRGP和木质素的诱导积累与其对溃疡病抗性的关系[J]. 植物病理学报, 1999, 29(2):151-156.
[39] 吴立柱, 王省芬, 张 艳, 等. 酸不可溶性木质素和漆酶在棉花抗黄萎病中的作用[J]. 作物学报, 2014, 40(7):1157-1163.
[40] ZHU Y T, HU X Q, WANG P, et al. GhODO1, an R2R3-type MYB transcription factor, positively regulates cotton resistance to Verticillium dahliae via the lignin biosynthesis and jasmonic acid signaling pathway[J]. International Journal of Biological Macromolecules, 2022, 201: 580-591. doi: 10.1016/j.ijbiomac.2022.01.120
[41] LI Y Y, WANG L, SUN G W, et al. Digital gene expression analysis of the response to Ralstonia solanacearum between resistant and susceptible tobacco varieties[J]. Scientific Reports, 2021, 11(1): 3887. doi: 10.1038/s41598-021-82576-8