[1] 李金垚, 潘 雯, 王 佳, 等. 土壤活性有机碳及碳库管理指数对石漠化治理措施的响应[J]. 林业科学研究, 2022, 35(5):156-163.
[2] WANG B R, LIU D, YANG J J, et al. Effects of forest floor characteristics on soil labile carbon as varied by topography and vegetation type in the Chinese Loess Plateau[J]. Catena, 2021, 196: 104825. doi: 10.1016/j.catena.2020.104825
[3] 李帅锋, 苏建荣, 刘万德, 等. 思茅松人工林土壤有机碳和氮储量变化[J]. 林业科学研究, 2015, 28(6):810-817.
[4] BONGIORNO G, BUNEMANN E K, OGUEJIOFOR C U, et al. Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe[J]. Ecological Indicators, 2019, 99: 38-50. doi: 10.1016/j.ecolind.2018.12.008
[5] BARRETO P A B, GAMA-RODRIGUES E F, GAMA-RODRIGUES A C, et al. Distribution of oxidizable organic C fractions in soils under cacao agroforestry systems in Southern Bahia, Brazil[J]. Agroforestry Systems, 2011, 81(3): 213-220. doi: 10.1007/s10457-010-9300-4
[6] BELAY-TEDLA A, ZHOU X, BO S, et al. Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warming and clipping[J]. Soil Biology & Biochemistry, 2009, 41(1): 110-116.
[7] YANG X, MENG J, LAN Y, et al. Effects of maize stover and its biochar on soil CO2 emissions and labile organic carbon fractions in Northeast China[J]. Agriculture, Ecosystems & Environment, 2017, 240: 24-31.
[8] BLAIR G, LEFROY R, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 1995, 46(7): 393-406.
[9] 钱虹宇, 周宏鑫, 罗原骏, 等. 土壤活性有机碳及碳库管理指数对高寒湿地退化的响应[J]. 生态学杂志, 2020, 39(7):2273-2282.
[10] 佟小刚, 韩新辉, 杨改河, 等. 碳库管理指数对退耕还林土壤有机碳库变化的指示作用[J]. 中国环境科学, 2013, 33(3):466-473.
[11] 刘江伟, 徐海东, 林同岳, 等. 海涂围垦区不同林分土壤活性有机碳垂直变化特征[J]. 林业科学研究, 2022, 35(3):18-26.
[12] YAO L, ADAME M F, CHEN C R. Resource stoichiometry, vegetation type and enzymatic activity control wetlands soil organic carbon in the Herbert River catchment, North-east Queensland[J]. Journal of Environmental Management, 2021, 296: 113183. doi: 10.1016/j.jenvman.2021.113183
[13] YUAN Z X, JIN X M, GUAN Q W, et al. Converting cropland to plantation decreases soil organic carbon stock and liable fractions in the fertile alluvial plain of eastern China[J]. Geoderma Regional, 2021, 24: e00356. doi: 10.1016/j.geodrs.2021.e00356
[14] DAWUD S M, RAULUND-RASMUSSEN K, RATCLIFFE S, et al. Tree species functional group is a more important driver of soil properties than tree species diversity across major European forest types[J]. Special Feature:The Ecology of De-Extinction, 2017, 31(5): 1153-1162.
[15] RATCLIFFE S, WIRTH C, JUCKER T, et al. Biodiversity and ecosystem functioning relations in European forests depend on environmental context[J]. Ecology letters, 2017, 20(11): 1414-1426. doi: 10.1111/ele.12849
[16] CAMPOS R, PIRES G F, COSTA M H. Soil carbon sequestration in rainfed and irrigated production systems in a New Brazilian agricultural frontier[J]. Agriculture, 2020, 10(5): 156. doi: 10.3390/agriculture10050156
[17] 徐 蛟, 王良杰. 江苏省平原沙土区河道生态提升建设探索[J]. 中国水利, 2020(23):42-43,4.
[18] 黄明逸, 朱成立, 韩以振, 等. 江苏省黄河故道沙土区植被措施因子试验分析[J]. 水土保持研究, 2017, 24(1):140-144.
[19] LIU H X, SUN Z J, DONG Y Q, et al. Precipitation drives the accumulation of soil organic carbon in the sandy desert of the Junggar Basin, Northwest China[J]. Ecological Indicators, 2022, 142: 109224. doi: 10.1016/j.ecolind.2022.109224
[20] 全国土壤普查办公室. 中国土种志[M]. 北京: 中国农业出版社, 1993.
[21] ELLIOTT E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils[J]. Soil Science Society of America Journal, 1986, 50(3): 627-627. doi: 10.2136/sssaj1986.03615995005000030017x
[22] 鲍士旦. 土壤农化分析 3版[M]. 北京: 中国农业出版社, 2000.
[23] 关松荫. 土壤酶及其研究法[M]. 北京: 中国农业出版社, 1986.
[24] KUKULS L, KLAVINS M, NIKODEMUS O, et al. Changes in soil organic matter and soil humic substances following the afforestation of former agricultural lands in the boreal-nemoral ecotone (Latvia)[J]. Geoderma Regional, 2019, 16: e00213. doi: 10.1016/j.geodrs.2019.e00213
[25] MAYER M, PRESCOTT C E, ABAKER W E, et al. Tamm review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis[J]. Forest Ecology and Management, 2020, 466: 118127. doi: 10.1016/j.foreco.2020.118127
[26] 沈芳芳, 袁颖红, 樊后保, 等. 氮沉降对杉木人工林土壤有机碳矿化和土壤酶活性的影响[J]. 生态学报, 2012, 32(2):517-527.
[27] 高 瑞, 王祎珂, 艾 宁, 等. 陕北特色经济林深层土壤有机碳特征及影响因素[J]. 森林与环境学报, 2021, 41(5):464-470.
[28] NEFF J C, ASNER G P. Dissolved organic carbon in terrestrial ecosystems: Synthesis and a model[J]. Ecosystems, 2001, 4(1): 29-48. doi: 10.1007/s100210000058
[29] PANG D B, CUI M, LIU Y G, et al. Responses of soil labile organic carbon fractions and stocks to different vegetation restoration strategies in degraded karst ecosystems of southwest China[J]. Ecological Engineering, 2019, 138: 391-402. doi: 10.1016/j.ecoleng.2019.08.008
[30] RICHTER D D, MARKEWITZ D, TRUMBORE S E, et al. Rapid accumulation and turnover of soil carbon in a re-establishing forest[J]. Nature, 1999, 400(6739): 56-58. doi: 10.1038/21867
[31] WANG Q K, XIAO F M, ZHANG F Y, et al. Labile soil organic carbon and microbial activity in three subtropical plantations[J]. Forestry, 2013, 86(5): 569-574. doi: 10.1093/forestry/cpt024
[32] YAN M F, LI T H, LI X R, et al. Microbial biomass and activity restrict soil function recovery of a post-mining land in eastern Loess Plateau[J]. Catena, 2021, 199: 105107. doi: 10.1016/j.catena.2020.105107
[33] 林鑫宇, 惠 昊, 王亚茹, 等. 不同林分类型下土壤活性有机碳含量和分布特征[J]. 安徽农业大学学报, 2021, 48(3):437-443.
[34] 谭桂霞, 刘苑秋, 李莲莲, 等. 湿地松林分结构调整对土壤活性有机碳的影响[J]. 应用生态学报, 2014, 25(5):1307-1312.
[35] MEENA V S, MONDAL T, PANDEY B M, et al. Land use changes: Strategies to improve soil carbon and nitrogen storage pattern in the mid-Himalaya ecosystem, India[J]. Geoderma, 2018, 321: 69-78. doi: 10.1016/j.geoderma.2018.02.002
[36] LI j, WEN Y C, LI X H, et al. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain[J]. Soil and Tillage Research, 2018, 175: 281-290. doi: 10.1016/j.still.2017.08.008
[37] PRIETO I, STOKES A, ROUMET C. Root functional parameters predict fine root decomposability at the community level[J]. Journal of ecology, 2016, 104(3): 725-733. doi: 10.1111/1365-2745.12537