[1] 杨静莉, 林 强, 陈国发. 落叶松八齿小蠹的危险性分析[J]. 东北林业大学学报, 2007, 35(3):60-63.
[2] HARRINGTON T C, FRAEDRICH S W, AGHAYEVA D N. Raffaelea lauricola, a new ambrosia beetle symbiont and pathogen on the Lauraceae[J]. Mycotaxon, 2008, 104(2): 399-404.
[3] BRASIER C M. Comparison of pathogencity and cultural characteristics in the EAN and NAN aggressive subgroups of Ophiostoma ulmi[J]. Transactions of the British Mycological Society, 1986, 87(1): 1-13. doi: 10.1016/S0007-1536(86)80001-8
[4] WEBBER J F, HANSEN E M. Susceptibility of European and north‐west American conifers to the North American vascular pathogen Leptographium wageneri[J]. European Journal of Forest Pathology, 1990, 20(6‐7): 347-354.
[5] YAMAOKA Y, WINGFIELD M J, OHSAWA M, et al. Ophiostomatoid fungi associated with Ips cembrae in Japan and their pathogenicity of Japanese larch[J]. Mycoscience, 1998(39): 367-378.
[6] REPE A, BOJOVIĆ S, JURC M. Pathogenicity of ophiostomatoid fungi on Picea abies in Slovenia[J]. Forest Pathology, 2015, 45(4): 290-297. doi: 10.1111/efp.12170
[7] WINGFIELD M J, SEIFERT K A, Webber J F. Ceratocystis and Ophiostoma: taxonomy, ecology, and pathogenicity[M]. St. Paul: American Phytopathological Society, 1993
[8] SIX D L. Ecological and evolutionary determinants of bark beetle—fungus symbioses[J]. Insects, 2012, 3(1): 339-366. doi: 10.3390/insects3010339
[9] BENTZ B J, SIX D L. Ergosterol content of fungi associated with Dendroctonus ponderosae and Dendroctonus rufipennis (Coleoptera: Curculionidae, Scolytinae)[J]. Annals of the Entomological Society of America, 2006, 99(2): 189-194. doi: 10.1603/0013-8746(2006)099[0189:ECOFAW]2.0.CO;2
[10] DIGUISTINI S, WANG Y, LIAO N Y, et al. Genome and transcriptome analyses of the mountain pine beetle-fungal symbiont Grosmannia clavigera, a lodgepole pine pathogen[J]. Proceedings of the National Academy of Sciences, 2011, 108(6): 2504-2509. doi: 10.1073/pnas.1011289108
[11] WADKE N, KANDASAMY D, VOGEL H, et al. The bark-beetle-associated fungus, Endoconidiophora polonica, utilizes the phenolic defense compounds of its host as a carbon source[J]. Plant Physiology, 2016, 171(2): 914-931.
[12] ZHAO T, GANJI S, SCHIEBE C, et al. Convergent evolution of semiochemicals across Kingdoms: bark beetles and their fungal symbionts[J]. The ISME journal, 2019, 13(6): 1535-1545. doi: 10.1038/s41396-019-0370-7
[13] ZHAO T, AXELSSON K, KROKENE P, et al. Fungal symbionts of the spruce bark beetle synthesize the beetle aggregation pheromone 2-methyl-3-buten-2-ol[J]. Journal of Chemical Ecology, 2015(41): 848-852.
[14] ZHAO T, KANDASAMY D, KROKENE P, et al. Fungal associates of the tree-killing bark beetle, Ips typographus, vary in virulence, ability to degrade conifer phenolics and influence bark beetle tunneling behavior[J]. Fungal Ecology, 2019(38): 71-79.
[15] BOONE C K, AUKEMA B H, BOHLMANN J, et al. Efficacy of tree defense physiology varies with bark beetle population density: a basis for positive feedback in eruptive species[J]. Canadian Journal of Forest Research, 2011, 41(6): 1174-1188. doi: 10.1139/x11-041
[16] FANG J X, LIU M, ZHANG S F, et al. Chemical signal interactions of the bark beetle with fungal symbionts, and host/non-host trees[J]. Journal of Experimental Botany, 2020, 71(19): 6084-6091. doi: 10.1093/jxb/eraa296
[17] WANG Z, LIU Y, WANG H M, et al. Ophiostomatoid fungi associated with Ips subelongatus, including eight new species from northeastern China[J]. IMA Fungus, 2020, 11(1): 1-29. doi: 10.1186/s43008-019-0026-2
[18] LIU Y, ZHOU Q Z, WANG Z, et al. Pathophysiology and transcriptomic analysis of Picea koraiensis inoculated by bark beetle-vectored fungus Ophiostoma bicolor[J]. Frontiers in Plant Science, 2022(13): 944336.
[19] RAJTAR N N, HELD B W, BLANCHETTE R A. Fungi from galleries of the emerald ash borer produce cankers in ash trees[J]. Forests, 2021, 12(11): 1509. doi: 10.3390/f12111509
[20] AGRIOS G N. Plant pathology[M]. England: Elsevier, 2005.
[21] SHANER G, STROMBERG E L, LACY G H, et al. Nomenclature and concepts of pathogenicity and virulence[J]. Annual Review of Phytopathology, 1992, 30(1): 47-66. doi: 10.1146/annurev.py.30.090192.000403
[22] KROKENE P, SOLHEIM H. Assessing the virulence of four bark beetle‐associated bluestain fungi using Norway spruce seedlings[J]. Plant Pathology, 1998, 47(4): 537-540. doi: 10.1046/j.1365-3059.1998.00268.x
[23] MATUSICK G, SOMERS G L, ECKHARDT L G. Root lesions in large loblolly pine (Pinus taeda L. ) following inoculation with four root‐inhabiting ophiostomatoid fungi[J]. Forest Pathology, 2012, 42(1): 37-43. doi: 10.1111/j.1439-0329.2011.00719.x
[24] MATUSICK G, ECKHARDT L G. Variation in virulence among four root-inhabiting Ophiostomatoid fungi on Pinus taeda L., P. palustris Mill, and P. elliottii Engelm. seedlings[J]. Canadian Journal of Plant Pathology, 2010, 32(3): 361-367. doi: 10.1080/07060661.2010.499268
[25] MOLNAR A C. Pathogenic fungi associated with a bark beetle on alpine fir[J]. Canadian Journal of Botany, 1965, 43(5): 563-570. doi: 10.1139/b65-062
[26] PAINE T D. Seasonal response of ponderosa pine to inoculation of the mycangial fungi from the western pine beetle[J]. Canadian Journal of Botany, 1984, 62(3): 551-555. doi: 10.1139/b84-081
[27] GRÉGOIRE J C, EVANS H F. Damage and control of BAWBILT organisms an overview[J]. Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis, 2004: 19-37.
[28] REDFERN D B, STOAKLEY J T, STEELE H, et al. Dieback and death of larch caused by Ceratocystis laricicola sp. nov. following attack by Ips cembrae[J]. Plant Pathology, 1987, 36(4): 467-480. doi: 10.1111/j.1365-3059.1987.tb02264.x
[29] POLYAKOVA G G, STASOVA V V, PASHENOVA N V. Defense response of pine stem phloem to wounding and treatment with mycelial extracts from Ceratocystis laricicola[J]. Russian Journal of Plant Physiology, 2011(58): 819-827.
[30] 周秀华, 崔 磊, 邓 勋, 等. 落叶松八齿小蠹伴生真菌富士长喙壳的致病性研究[J]. 河南农业科学, 2011, 40(12):102.
[31] CALE J A, DING R, WANG F, et al. Ophiostomatoid fungi can emit the bark beetle pheromone verbenone and other semiochemicals in media amended with various pine chemicals and beetle-released compounds[J]. Fungal Ecology, 2019(39): 285-295.
[32] PLATTNER A, KIM J J, DIGUISTINI S, et al. Variation in pathogenicity of a mountain pine beetle–associated blue-stain fungus, Grosmannia clavigera, on young lodgepole pine in British Columbia[J]. Canadian Journal of Plant Pathology, 2008, 30(3): 457-466. doi: 10.1080/07060660809507543
[33] BARTON K E, KORICHEVA J. The ontogeny of plant defense and herbivory: characterizing general patterns using meta-analysis[J]. The American Naturalist, 2010, 175(4): 481-493. doi: 10.1086/650722
[34] LIU Y, ANASTACIO G R, ISHANGULYYEVA G, et al. Mutualistic Ophiostomatoid fungi equally benefit from both a bark beetle pheromone and host tree volatiles as nutrient sources[J]. Microbial Ecology, 2021(81): 1106-1110.
[35] WINGFIELD M J, GARNAS J R, HAJEK A, et al. Novel and co-evolved associations between insects and microorganisms as drivers of forest pestilence[J]. Biological Invasions, 2016(18): 1045-1056.