[1] KRENEK P, SAMAJOVA O, LUPTOVCIAK I, et al. Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications[J]. Biotechnology Advances, 2015, 33(6): 1024-1042. doi: 10.1016/j.biotechadv.2015.03.012
[2] MCCULLEN C A, BINNS A N. Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer[J]. Annual Review of Cell and Developmental Biology, 2006, 22: 101-127. doi: 10.1146/annurev.cellbio.22.011105.102022
[3] BHASKAR P B, VENKATESHWARAN M, WU L, et al. Agrobacterium-mediated transient gene expression and silencing: a rapid tool for functional gene assay in potato[J]. PLoS ONE, 2009, 4(6): e5812. doi: 10.1371/journal.pone.0005812
[4] WANG L, CHEN W, LIU Y, et al. Optimization of Agrobacterium-mediated transient gene expression system and its utilization in RNAi based gene silencing of rose (Rosa hybrida) petals[J]. Journal of Agricultural Biotechnology, 2014, 22(2): 133-140.
[5] MARION J, BACH L, BELLEC Y, et al. Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings[J]. The Plant Journal, 2008, 56(1): 169-179. doi: 10.1111/j.1365-313X.2008.03596.x
[6] LI J F, PARK E, VON ARNIM A G, et al. The FAST technique: a simplified Agrobacterium-based transformation method for transient gene expression analysis in seedlings of Arabidopsis and other plant species[J]. Plant Methods, 2009, 5: 6. doi: 10.1186/1746-4811-5-6
[7] XIA P, HU W, LIANG T, et al. An attempt to establish an Agrobacterium-mediated transient expression system in medicinal plants[J]. Protoplasma, 2020, 257(6): 1497-1505. doi: 10.1007/s00709-020-01524-x
[8] BOIVIN E B, LEPAGE E, MATTON D P, et al. Transient expression of antibodies in suspension plant cell suspension cultures is enhanced when co- transformed with the tomato bushy stunt virus p19 viral suppressor of gene silencing[J]. Biotechnology Progress, 2010, 26(6): 1534-1543. doi: 10.1002/btpr.485
[9] 魏文桃, 张千悦, 吴 季, 等. 杉木愈伤组织的高效诱导和瞬时转化体系的建立[J]. 分子植物育种, 2023, 21(6):2007-2017.
[10] SHEN J B, FU J X, MA J, et al. Isolation, culture, and transient transformation of plant protoplasts[J]. Current Protocols in Cell Biology, 2014, 63(1): 2.8.1-2.8.17.
[11] 赵小慧, 郁 凯, 刘 冲, 等. 玉米叶片原生质体瞬时转化体系的优化[J]. 大麦与谷类科学, 2022, 39(6):6-10.
[12] 李 刚, 宋平丽, 王 翔, 等. 农杆菌介导的杜梨叶片瞬时转化方法的建立[J]. 果树学报, 2021, 38(11):2006-2013.
[13] HELLWIG S, DROSSARD J, TWYMAN R M, et al. Plant cell cultures for the production of recombinant proteins[J]. Nature Biotechnology, 2004, 22: 1415-1422. doi: 10.1038/nbt1027
[14] 吴英杰, 姜 波, 张 岩. 农杆菌介导的烟草瞬时表达试验条件优化[J]. 东北林业大学学报, 2010, 38(9):110-112. doi: 10.3969/j.issn.1000-5382.2010.09.033
[15] WU H Y, LIU K H, WANG Y C, et al. AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings[J]. Plant Methods, 2014, 10: 9. doi: 10.1186/1746-4811-10-9
[16] SUN C, XIE Y H, LI Z, et al. The Larix kaempferi genome reveals new insights into wood properties[J]. Journal of Integrative Plant Biology, 2022, 64(7): 1364-1373. doi: 10.1111/jipb.13265
[17] LI W F, YANG W H, ZHANG S G, et al. Transcriptome analysis provides insights into wood formation during larch tree aging[J]. Tree Genetics and Genomes, 2017, 13: 19. doi: 10.1007/s11295-017-1106-3
[18] ZHANG Y, ZHANG S G, HAN S Y, et al. Transcriptome profiling and in silico analysis of somatic embryos in Japanese larch (Larix leptolepis)[J]. Plant Cell Reports, 2012, 31(9): 1637-1657. doi: 10.1007/s00299-012-1277-1
[19] HE S E, XIE Y H, SUN X M, et al. Comparative transcriptome analyses reveal candidate genes regulating wood quality in Japanese larch (Larix kaempferi)[J]. Journal of Forestry Research, 2020, 31(1): 65-73. doi: 10.1007/s11676-019-00997-8
[20] ROSSI L, ESCUDERO J, HOHN B, et al. Efficient and sensitive assay for T-DNA-dependent transient gene expression[J]. Plant Molecular Biology Reporter, 1993, 11(3): 220-229.
[21] KANG Y H, LI W F, ZHANG L F, et al. Over-expression of the cell-cycle gene LaCDKB1; 2 promotes cell proliferation and the formation of normal cotyledonary embryos during Larix kaempferi somatic embryogenesis[J]. Genes, 2021, 12(9): 1435. doi: 10.3390/genes12091435
[22] DANG S F, ZHANG L F, HAN S Y, et al. Agrobacterium-mediated genetic transformation of Larix kaempferi (Lamb. ) Carr. embryogenic cell suspension cultures and expression analysis of exogenous genes[J]. Forests, 2022, 13(9): 1436. doi: 10.3390/f13091436
[23] LI Z X, LI S G, ZHANG L F, et al. Over-expression of miR166a inhibits cotyledon formation in somatic embryos and promotes lateral root development in seedlings of Larix leptolepis[J]. Plant Cell, Tissue and Organ Culture, 2016, 127(2): 461-473. doi: 10.1007/s11240-016-1071-9
[24] 宋 跃, 甄 成, 张含国, 等. 长白落叶松胚性愈伤组织诱导及体细胞胚胎发生[J]. 林业科学, 2016, 52(10):45-54. doi: 10.11707/j.1001-7488.20161006
[25] LI W F, ZHANG S G, HAN S Y, et al, The post-transcriptional regulation of LaSCL6 by miR171 during maintenance of embryogenic potential in Larix kaempferi (Lamb. ) Carr[J]. Tree Genetics and Genomes, 2014, 10(1): 223-229. doi: 10.1007/s11295-013-0668-y
[26] 王 飞, 邢新生, 马有志, 等. 根癌农杆菌介导D32基因转化烟草的条件研究[J]. 西北植物学报, 2009, 29(6):1104-1110. doi: 10.3321/j.issn:1000-4025.2009.06.006
[27] 彭绿春, 周 微, 汪玲敏, 等. 基于GUS基因瞬时表达优化云南杜鹃(Rhododendron yunnanense Franch. )遗传转化方法[J]. 云南农业大学学报(自然科学), 2016, 31(6):1045-1051.
[28] 王关林, 方 宏. 植物基因工程[M]. 2版. 北京: 科学出版社, 2002: 344-346.
[29] 余智莹, 张 平, 徐志胜, 等. 根癌农杆菌介导的‘魏可’葡萄遗传转化体系的优化[J]. 果树学报, 2012, 29(3):343-349 + 524.
[30] 郝贵霞, 朱 祯, 朱之悌. 毛白杨遗传转化系统优化的研究[J]. 植物学报, 1999, 41(9):936-940.
[31] 李濯雪, 陈信波. 植物诱导型启动子及相关顺式作用元件研究进展[J]. 生物技术通报, 2015, 31(10):8-15.
[32] ZOU X P, SONG E L, PENG A H, et al. Activation of three pathogen-inducible promoters in transgenic citrus (Citrus sinensis Osbeck) after Xanthomonas axonopodis pv. citri infection and wounding[J]. Plant Cell, Tissue and Organ Culture, 2014, 117(1): 85-98. doi: 10.1007/s11240-013-0423-y
[33] LI C, JIANG W T, JIANG X N, et al. Cloning and functional analysis of the PLkF3H2 promoter in Larix kaempferi[J]. Plant Cell, Tissue and Organ Culture, 2023, 154(2): 481-491. doi: 10.1007/s11240-023-02467-w