[1] 贺金生, 韩兴国. 生态化学计量学: 探索从个体到生态系统的统一化理论[J]. 植物生态学报,2010,34(1):2-6. doi: 10.3773/j.issn.1005-264x.2010.01.002
[2] ELSER J J, BRACKEN M E, CLELAND E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology letters,2007,10(12): 1135-1142. doi: 10.1111/j.1461-0248.2007.01113.x
[3] LI X, SUN K, LI F Y. Variation in leaf nitrogen and phosphorus stoichiometry in the nitrogen-fixing Chinese sea-buckthorn (Hippophae rhamnoides L. subsp. sinensis Rousi) across northern China[J]. Ecological research, 2014, 29(11): 723-731.
[4] LUO Y, PENG Q, LI K, et al. Patterns of nitrogen and phosphorus stoichiometry among leaf, stem and root of desert plants and responses to climate and soil factors in Xinjiang, China[J]. Catena,2021,199(25): 105-115.
[5] MOLES A T, PERKINS S E, LAFFAN S W, et al. Which is a better predictor of plant traits: temperature or precipitation?[J]. Journal of Vegetation Science,2014,25(5): 1167-1180. doi: 10.1111/jvs.12190
[6] SALEHI M, WALTHERT L, ZIMMERMANN S, et al. Leaf morphological traits and leaf nutrient concentrations of European beech across a water availability gradient in Switzerland[J]. Frontiers in Forests and Global Change,2020,3(12): 19-30.
[7] WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum[J]. Nature.,2004,428(6985): 821-827. doi: 10.1038/nature02403
[8] GONG H, CUI Q, GAO J. Latitudinal, soil and climate effects on key leaf traits in northeastern China[J]. Global Ecology and Conservation,2020,22(12): 892-904.
[9] FUNK J L, LARSON J E, VOSE G. Leaf traits and performance vary with plant age and water availability in Artemisia californica[J]. Annals of Botany,2021,127(4): 495-503. doi: 10.1093/aob/mcaa106
[10] ZHANG K, HOU J H, HE N P. Leaf functional trait distribution and controlling factors of Pinus tabuliformis[J]. Acta Ecological Sinica,2017,37(3): 736-749.
[11] 汤俊兵, 肖 燕, 安树青. 根茎克隆植物生态学研究进展[J]. 生态学报,2010,30(11):3028-3036.
[12] 陶建平, 宋利霞. 亚高山暗针叶林不同林冠环境下华西箭竹的克隆可塑性[J]. 生态学报,2006,23(12):4019-4026. doi: 10.3321/j.issn:1000-0933.2006.12.013
[13] 陶建平, 钟章成. 匍匐茎草本活血丹( Glechomalongituba)在不同养分条件下的克隆形态[J]. 生态学报,2000,27(2):207-211. doi: 10.3321/j.issn:1000-0933.2000.02.006
[14] 蓝春宝, 徐 森, 程建新, 等. 苦竹-杉木混交林界面区克隆分株秆形和地上生物量分配的适应策略[J]. 广西植物,2023,43(5):858-868. doi: 10.11931/guihaia.gxzw202202001
[15] 林 华, 谢燕燕, 杨丽婷, 等. 苦竹叶片碳氮磷化学计量特征的海拔梯度效应[J]. 广西植物,2021,41(9):1443-1449. doi: 10.11931/guihaia.gxzw202009027
[16] 应益山, 杨丽婷, 程建新, 等. 不同生境对苦竹鞭根形态结构及其异速生长的影响[J]. 西北植物学报,2022,42(9):1583-1590. doi: 10.7606/j.issn.1000-4025.2022.09.1583
[17] 郑淑霞, 上官周平. 黄土高原地区植物叶片养分组成的空间分布格局[J]. 自然科学进展,2006,23(8):965-973. doi: 10.3321/j.issn:1002-008X.2006.08.008
[18] 庞荣荣, 彭潔莹, 闫 琰. 太白山次生锐齿栎林地上生物量影响因素[J]. 林业科学,2021,57(10):157-165. doi: 10.11707/j.1001-7488.20211015
[19] 石亚飞, 石善恒, 黄晓敏. 基于R的结构方程模型在生态学中的应用[J]. 生态学杂志,2022,41(5):1015-1023.
[20] 王酉石, 储诚进. 结构方程模型及其在生态学中的应用[J]. 植物生态学报,2011,35(3):337-344.
[21] 杜满义, 范少辉, 刘广路, 等. 中国毛竹林碳氮磷生态化学计量特征[J]. 植物生态学报,2016,40(8):760-774. doi: 10.17521/cjpe.2015.0464
[22] ZHANG X, HE X, GAO J, et al. Latitudinal and climate effects on key plant traits in Chinese forest ecosystems[J]. Global Ecology and Conservation,2019,17(6): 516-527.
[23] WRIGHT I J, REICH P B, CORNELISSEN J H C, et al. Assessing the generality of global leaf trait relationships[J]. New phytologist,2005,166(2): 485-496. doi: 10.1111/j.1469-8137.2005.01349.x
[24] 郭子武, 章 超, 杨丽婷等. 提前钩梢对雷竹地上构件生物量分配及其异速生长的影响[J]. 生态学报,2020,40(2):711-718.
[25] GUSEWELL S, KOERSELMAN W, VERHOEVEN J T A. Biomass N: P ratios as indicators of nutrient limitation for plant populations in wetlands[J]. Ecological Applications,2003,13(2): 372-384. doi: 10.1890/1051-0761(2003)013[0372:BNRAIO]2.0.CO;2
[26] ELSER J J, FAGAN W F, KERKHOFF A J, et al. Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change[J]. New phytologist,2010,186(3): 593-608. doi: 10.1111/j.1469-8137.2010.03214.x
[27] AGREN G I, WETTERSTEDT J A M, BILLBERGER M F K, et al. Nutrient limitation on terrestrial plant growth-Modeling the interaction between nitrogen and phosphorus[J]. New phytologist,2012,194(4): 953-960. doi: 10.1111/j.1469-8137.2012.04116.x
[28] LI H L, JAMES M, CRABBE C, et al. Seasonal variations in carbon, nitrogen and phosphorus concentrations and C: N: P stoichiometry in the leaves of differently aged Larix principis-rupprechtii Mayr[J]. Forests,2017,8(10): 373-380. doi: 10.3390/f8100373
[29] ZHANG H, GUO W H, YU M K, et al. Latitudinal patterns of leaf N, P stoichiometry and nutrient resorption of Metasequoia glyptostroboides along the eastern coastline of China[J]. Science of the total environment,2018,618(12): 1-6.
[30] LI D S, SHI Z M, FENG Q H, et al. Response of leaf morphometric traits of Quercus species to climate in the temperate zone of the North-South Transect of Eastern China[J]. Chinese Journal of Plant Ecology,2013,37(9): 793-799.
[31] GUO W, CHERUBINI P, ZHANG J, et al. Soil physicochemical properties determine leaf traits but not size traits of moso bamboo ( Phyllostachys edulis)[J]. Environmental Research Letters,2022,17(11): 114-119.
[32] ORDONEZ J C, VAN BODEGOM P M, WITTE J P M, et al. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility[J]. Global Ecology and Biogeography,2009,18(2): 137-149. doi: 10.1111/j.1466-8238.2008.00441.x
[33] LIU Z, HIKOSAKA K, LI F, et al. Variations in leaf economics spectrum traits for an evergreen coniferous species: Tree size dominates over environment factors[J]. Functional Ecology,2020,34(2): 458-467. doi: 10.1111/1365-2435.13498