[1] New T, Xie Z. Impacts of large dams on riparian vegetation: applying global experience to the case of China’s Three Gorges Dam[J]. Biodiversity Conservation, 2008, 17(13): 3149-3163. doi: 10.1007/s10531-008-9416-2
[2] Yang F, Liu W, Wang J, et al. Riparian vegetation’s responses to the new hydrological regimes from the Three Gorges Project: Clues to revegetation in reservoir water-level-fluctuation zone[J]. Acta Ecologica Sinica, 2012, 32(2): 89-98. doi: 10.1016/j.chnaes.2012.02.004
[3] Pan X, Wan C, Zhang Z, et al. Protection and ecological restoration of water level fluctuation zone in the Three Gorges Reservoir[J]. Journal of Landscape Research, 2017, 9(1): 47-53.
[4] 郭 燕, 程瑞梅, 杨 邵, 等. 三峡库区不同植被类型消落带土壤重金属含量的时空变异[J]. 生态学杂志, 2018, 37(8):2497-2504.
[5] 叶功富. 滨海沙地湿地松与木麻黄混交林构建和调控技术研究[J]. 林业科学研究, 2002, 15(4):463-468. doi: 10.3321/j.issn:1001-1498.2002.04.017
[6] 张太平, 任 海, 彭少麟, 等. 湿地松(Pinus elliottii Engelm.)的生态生物学特征[J]. 生态科学, 1999, 18(2):8-12. doi: 10.3969/j.issn.1008-8873.1999.02.002
[7] 周 珺, 魏 虹, 吕 茜, 等. 土壤水分对湿地松幼苗光合特征的影响[J]. 生态学杂志, 2012, 31(1):32-39.
[8] 王振夏, 魏 虹, 李昌晓, 等. 土壤水分交替变化对湿地松幼苗光合特性的影响[J]. 西北植物学报, 2012, 32(5):980-987. doi: 10.3969/j.issn.1000-4025.2012.05.021
[9] Ye Z. Effects of Submergence and Drought Alternation on Photosynthesis and Growth of Pinus elliottii Seedlings[J]. Scientia Silvae Sinicae, 2011, 47(12): 158-164.
[10] 苏梦云, 刘昭息, 周国璋. 火炬松和湿地松幼苗蔗糖含量与生长潜势关系的研究初报[J]. 林业科学研究, 1997, 10(1):94-96.
[11] 洪顺山, 胡炳堂. 湿地松幼林施肥五年生长反应[J]. 林业科学研究, 1997, 10(6):624-628.
[12] Berry J A. Environmental Regulation of Photosynthesis[J]. Photosynthesis, 1982,2: 263-343.
[13] 李合生. 植物生理生化试验原理与技术[M]. 北京: 高等教育出版社, 2000.
[14] Grace S C, Logan B A. Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species[J]. Plant Physiol, 1996, 112(4): 1631-1640. doi: 10.1104/pp.112.4.1631
[15] 张 晔, 李昌晓. 水淹与干旱交替胁迫对湿地松幼苗光合与生长的影响[J]. 林业科学, 2011, 47(12):158-164. doi: 10.11707/j.1001-7488.20111224
[16] 李昌晓, 钟章成, 刘 芸. 模拟三峡库区消落带土壤水分变化对落羽杉幼苗光合特性的影响[J]. 生态学报, 2005a, 25(8):1953-1959.
[17] 李昌晓, 钟章成. 模拟三峡库区消落带土壤水分变化条件下落羽杉与池杉幼苗的光合特性比较[J]. 林业科学, 2005b, 41(6):28-34.
[18] Pezeshki S R, Li S, Jr F D S, et al. Factors governing survival of black willow (Salix nigra) cuttings in a streambank restoration project[J]. Ecological Engineering, 2007, 29(1): 56-65.
[19] Kozlowski T T. Responses of woody plants to flooding and salinity[J]. Flooding & Plant Growth, 1984, 1(7): 129-163.
[20] Beckman T, Perry R, Flore J. Short-term flooding affects gas exchange characteristics of containerized sour cherry trees[J]. Hortscience A Publication of the American Society for Horticultural Science, 1992, 27(12): 1297-1301.
[21] Yordanova R Y, Uzunova A N, Popova L P. Effects of short-term soil flooding on stomata behaviour and leaf gas exchange in barley plants[J]. Biologia Plantarum, 2005, 49(2): 317-319. doi: 10.1007/s10535-005-7319-6
[22] 刘泽彬, 程瑞梅, 肖文发, 等. 中华蚊母树(Distylium chinense)幼苗对秋、冬季淹水的生长及生理响应[J]. 湖泊科学, 2016, 28(2):405-413. doi: 10.18307/2016.0221
[23] Iwanaga F, Yamamoto F. Effects of flooding depth on growth, morphology and photosynthesis in Alnus japonica species[J]. New Forests, 2008, 35(1): 1-14.
[24] Ridge I. Ethylene and growth control in amphibious plants[J]. Plant Life in Aquatic & Amphibious Habitats, 1987(5): 53-76.
[25] 衣英华, 樊大勇, 谢宗强, 等. 模拟淹水对枫杨和栓皮栎气体交换、叶绿素荧光和水势的影响[J]. 植物生态学报, 2006, 30(6):960-968. doi: 10.3321/j.issn:1005-264X.2006.06.011
[26] Farquhar G D, Sharkey T D. Stomatal Conductance and Photosynthesis[J]. Annual Review of Plant Physiology, 1982, 33(1): 317-345. doi: 10.1146/annurev.pp.33.060182.001533
[27] Regehr D L, Bazzaz F A, Boggess W R. Photosynthesis, transpiration and leaf conductance of Populus deltoides in relation to flooding and drought[J]. Photosynthetica, 1975, 9(10): 52-61.
[28] Liu Z, Cheng R, Xiao W, et al. Leaf gas exchange, chlorophyll fluorescence, non-structural carbohydrate content and growth responses of Distylium chinense, during complete submergence and subaerial re-emergence[J]. Aquatic Botany, 2015, 124: 70-77.
[29] 陈 静, 秦 景, 贺康宁, 等. 水分胁迫对银水牛果生长及光合气体参数的影响[J]. 西北植物学报, 2009, 29(8):1649-1655. doi: 10.3321/j.issn:1000-4025.2009.08.024
[30] 王朝英, 李昌晓, 张 晔. 水淹-干旱胁迫对南川柳苗木生长及生理特性的影响[J]. 林业科学, 2013, 49(12):164-170.
[31] Suleman P, Afzal M, Al-Hasan R. Temperature-induced changes of malondialdehyde, heat-shock proteins in relation to chlorophyll fluorescence and photosynthesis in Conocarpus lancifolius (English.)[J]. Acta Physiologiae Plantarum, 2013, 35(4): 1223-1231. doi: 10.1007/s11738-012-1161-1
[32] Fadzilla N M, Finch R P, Burdon R H. Salinity, oxidative stress and antioxidant responses in shoot cultures of rice[J]. Journal of Experimental Botany, 1997, 48(2): 325-331. doi: 10.1093/jxb/48.2.325
[33] Yang Y, Han C, Liu Q, et al. Effect of drought and low light on growth and enzymatic antioxidant system of Piceaasperata seedlings[J]. Acta Physiologiae Plantarum, 2008, 30(4): 433-440. doi: 10.1007/s11738-008-0140-z
[34] 吴 寒. 活性氧在植物体内的作用及其清除体制[J]. 广东蚕业, 2018, 52(3):18.
[35] Alexander H,Jörg L, Ivano B,et al . Effects of aluminium treatment on Norway spruce roots: Aluminium binding forms, element distribution, and release of organic substances[J]. Plant and soil, 2000, 216(1): 103-116.
[36] 贺燕燕, 王朝英, 袁中勋, 等. 三峡库区消落带不同水淹强度下池杉与落羽杉的光合生理特性[J]. 生态学报, 2018, 38(8):121-130.
[37] 陈海生, 金连根. 淹水胁迫对水库消落带狗牙根保护酶活性的影响[J]. 内蒙古农业大学学报: 自然科学版, 2014, 35(1):46-48.
[38] 李 川, 周 倩, 王大铭, 等. 模拟三峡库区淹水对植物生长及生理生化方面的影响[J]. 西南大学学报: 自然科学版, 2011, 33(10):46-50.
[39] 莫荣利, 李 勇, 于 翠, 等. 水分胁迫对桑树生理生化特性的影响[J]. 湖北农业科学, 2017, 56(24)-4820.
[40] 张东向, 赫延龄, 郑蔚虹, 等. 植物对SO2反应的研究及其在环境保护中的应用[J]. 高师理科学刊, 1996, 16(2):78-80.
[41] 阎秀峰, 李 晶, 祖元刚. 干旱胁迫对红松幼苗保护酶活性及脂质过氧化作用的影响[J]. 生态学报, 1999, 19(6):850-854. doi: 10.3321/j.issn:1000-0933.1999.06.014