[1] 王一格, 王海燕, 郑永林, 等. 农业面源污染研究方法与控制技术研究进展[J]. 中国农业资源与区划, 2021, 42(1):25-33.
[2] 王 萌, 杨生光, 耿润哲. 农业面源污染防治的监测问题分析[J]. 中国环境监测, 2022, 38(2):61-66.
[3] RAHMANA A, RAHMANA S, CIHACEK L. Influence of soil pH in vegetative filter strips for reducing soluble nutrient transport[J]. Environmental Technology, 2014, 35(14): 1744-1752. doi: 10.1080/09593330.2014.881421
[4] DOSSKEY M G, VIDON P, GURWICK N P, et al. The role of riparian vegetation in protecting and improving chemical water quality in streams[J]. Journal of the American Water Resources Assoication, 2010, 46(2): 261-277. doi: 10.1111/j.1752-1688.2010.00419.x
[5] 王洪铸, 王海军, 李 艳, 等. 湖泊富营养化治理: 集中控磷, 或氮磷皆控[J]. 水生生物学报, 2020, 44(5): 938-960.
[6] 胡海波, 邓文斌, 王 霞. 长江流域河岸植被缓冲带生态功能及构建技术研究进展[J]. 浙江农林大学学报, 2022, 39(1):214-222.
[7] RAMLER D, STUTTER M, WEIGELHOFER G, et al. Keeping up with phosphorus dynamics: overdue conceptual changes in vegetative filter strip research and management[J]. Frontiers in Environmental Science, 2022, 10: 764333. doi: 10.3389/fenvs.2022.764333
[8] CAO X Y, SONG C L, XIAO J, et al. The optimal width and mechanism of riparian buffers for storm water nutrient removal in the Chinese eutrophic Lake Chaohu Watershed[J]. Water, 2018, 10(10): 1489. doi: 10.3390/w10101489
[9] 孙东耀, 仝 川, 纪钦阳, 等. 不同类型植被河岸缓冲带对模拟径流及总磷的消减研究[J]. 环境科学学报, 2018, 38(6):2393-2399.
[10] AGUIAR T R, RASERA K, PARRON L M, et al. Nutrient removal effectiveness by riparian buffer zones in rural temperate watersheds: the impact of no-till crops practices[J]. Agricultural Water Management, 2015, 149: 74-80. doi: 10.1016/j.agwat.2014.10.031
[11] ABU-ZREIG M, RUDRA R P, WHITELEY H R. Phosphorus removal in vegetated filter strips[J]. Journal of Environmental Quality, 2003, 32(2): 613-619. doi: 10.2134/jeq2003.6130
[12] LV J, WU Y B. Nitrogen removal by different riparian vegetation buffer strips with different stand densities and widths[J]. Water Supply, 2021, 21(7): 3541-3556. doi: 10.2166/ws.2021.119
[13] 汪 玉, 赵 旭, 王 磊, 等. 太湖流域稻麦轮作农田磷素累积现状及其环境风险与控制对策[J]. 农业环境科学学报, 2014, 33(5):829-835.
[14] 汪 玉, 袁佳慧, 陈 浩, 等. 太湖流域典型农田土壤磷库演变特征及环境风险预测[J]. 土壤学报, 2022, 59(6):1640-1649.
[15] 胡晓燕, 朱元荣, 孙福红, 等. 河流氮磷和水量输入对太湖富营养化的影响机理研究[J]. 环境科学研究, 2022, 35(6):1407-1418.
[16] 吴浩云, 贾更华, 徐 彬, 等. 1980年以来太湖总磷变化特征及其驱动因子分析[J]. 湖泊科学, 2021, 33(4):974-991.
[17] 王亚茹. 不同杨树人工林类型下土壤磷淋失特征的研究 [D]. 南京: 南京林业大学, 2021.
[18] 李 想, 邸 青. 暴雨和缓冲带特征对城市滨水缓冲带雨洪消减与水质净化效果的影响机制[J]. 生态学报, 2019, 39(16):5932-5942.
[19] KELLY J M, KOVAR J L, SOKOLOWSKY R, et al. Phosphorus uptake during four years by different vegetative cover types in a riparian buffer[J]. Nutrient Cycling in Agroecosystems, 2007, 78(3): 239-251. doi: 10.1007/s10705-007-9088-4
[20] 周子尧, 吴永波, 余昱莹, 等. 河岸杨树人工林缓冲带对径流水中磷素截留效果的研究[J]. 南京林业大学学报(自然科学版), 2019, 43(2):100-106.
[21] 廖 敏, 叶照金, 黄 宇, 等. 长兴县合溪水库集雨区苗木地不同施肥管理模式对径流磷素流失的影响[J]. 生态学报, 2017, 37(21):7342-7350.
[22] 刘瑞霞, 王立阳, 孙 菲, 等. 以农业面源污染阻控为目标的河流生态缓冲带研究进展[J]. 环境工程学报, 2022, 16(1):25-39.
[23] 吴永波. 河岸植被缓冲带减缓农业面源污染研究进展[J]. 南京林业大学学报(自然科学版), 2015, 39(3):143-148.
[24] 魏忠平, 朱永乐, 汤家喜, 等. 模拟黑麦草植被缓冲带对径流中氮、磷以及悬浮颗粒物的截留效果研究[J]. 沈阳农业大学学报, 2020, 51(3):328-334.
[25] 査晶晶, 吴永波, 茆安敏, 等. 河岸人工林缓冲带对径流水磷素的截留效果[J]. 浙江农林大学学报, 2020, 37(4):639-645.
[26] 吴建强. 不同坡度缓冲带滞缓径流及污染物去除定量化[J]. 水科学进展, 2011, 22(1):112-117.
[27] 程昌锦, 张 建, 宋涵晴, 等. 丹江口库区马尾松人工林地表径流氮磷截留效应[J]. 生态学杂志, 2021, 40(6):1567-1573.
[28] MAYER P M, REYNOLDS S K, MCCUTCHEN M D, et al. Meta-analysis of nitrogen removal in riparian buffers[J]. Journal of Environmental Quality, 2007, 36(4): 1172-1180. doi: 10.2134/jeq2006.0462
[29] 史中奇, 王 猛, 谭 军, 等. 植被缓冲带对乌梁素海区域农业面源污染的削减效果[J]. 水土保持学报, 2022, 36(3):51-56. doi: 10.13870/j.cnki.stbcxb.2022.03.008
[30] 李怀恩, 邓 娜, 杨寅群, 等. 植被过滤带对地表径流中污染物的净化效果[J]. 农业工程学报, 2010, 26(7):81-86.
[31] 朱 颖, 吴永波, 李文霞, 等. 河岸人工林缓冲带截留磷素能力及适宜宽度[J]. 东北林业大学学报, 2016, 44(12):31-36 + 41.
[32] 赵警卫, 胡 彬. 河岸带植被对非点源氮、磷以及悬浮颗粒物的截留效应[J]. 水土保持通报, 2012, 32(4):51-55.
[33] 朱晓成, 吴永波, 余昱莹, 等. 太湖乔木林河岸植被缓冲带截留氮素效率[J]. 浙江农林大学学报, 2019, 36(3):565-572.
[34] YANG F S, YANG Y Q, LI H E, et al. Removal efficiencies of vegetation-specific filter strips on nonpoint source pollutants[J]. Ecological Engineering, 2015, 82: 145-158. doi: 10.1016/j.ecoleng.2015.04.018
[35] BU X, XUE J, ZHAO C, et al. Sediment and nutrient removal by integrated tree-grass riparian buffers in Taihu Lake watershed, eastern China[J]. Journal of Soil and Water Conservation, 2016, 71(2): 129-136. doi: 10.2489/jswc.71.2.129
[36] HU Y X, GAO L, MA C M, et al. The comprehensive reduction capacity of five riparian vegetation buffer strips for primary pollutants in surface runoff[J]. Applied Sciences, 2023, 13(6): 3898. doi: 10.3390/app13063898
[37] 周树平, 梁坤南, 杜 健, 等. 不同密度柚木人工林林下植被及土壤理化性质的研究[J]. 植物研究, 2017, 37(2):200-210.
[38] COLE L J, STOCKAN J, HELLIWELL R. Managing riparian buffer strips to optimise ecosystem services: a review[J]. Agriculture, Ecosystems & Environment, 2020, 296: 106891.
[39] 郭蔚华, 徐灵华, 王 柱. 桃花溪河岸生态建设中植物配置与面源氮磷削减[J]. 科技导报, 2010, 28(7):50-54.
[40] 卜晓莉, 王利民, 薛建辉. 湖滨林草复合缓冲带对泥沙和氮磷的拦截效果[J]. 水土保持学报, 2015, 29(4):32-36.
[41] WANG L M, DUGGIN J A, NIE D. Nitrate-nitrogen reduction by established tree and pasture buffer strips associated with a cattle feedlot effluent disposal area near Armidale, NSW Australia[J]. Journal Environmental Management, 2012, 99: 1-9.
[42] SYVERSEN N. Effect and design of buffer zones in the Nordic climate: the influence of width, amount of surface runoff, seasonal variation and vegetation type on retention efficiency for nutrient and particle runoff[J]. Ecological Engineering, 2005, 24(5): 483-490. doi: 10.1016/j.ecoleng.2005.01.016
[43] 张钰荣, 吴永波, 茆安敏. 两种河岸缓冲带对径流水中磷的截留效果[J]. 森林与环境学报, 2023, 43(2):139-144.
[44] CAI Y M, FENG M Q, ZHANG T. Review of distribution of nitrogen and phosphorus in riparian zones of Chinese inland water bodies[J]. Acta Ecologica Sinica, 2022, 42(6): 583-592. doi: 10.1016/j.chnaes.2021.09.010
[45] 李金金, 张 健, 张阿娟, 等. 不同密度巨桉人工林林下植物多样性及根际土壤化感物质[J]. 应用生态学报, 2020, 31(7):2175-2184.
[46] 肖占文, 鄂利锋, 任建忠, 等. 化肥减量配施有机硅有机肥对盐碱土改良及玉米产量的影响[J]. 耕作与栽培, 2022, 42(3):42-45.
[47] LI R, KUO Y M. Effects of shallow water table depth on vegetative filter strips retarding transport of nonpoint source pollution in controlled flume experiments[J]. International Journal of Environmental Research, 2021, 15(1): 163-175. doi: 10.1007/s41742-020-00305-x