[1] Canfield D E, Glazer A N, Falkowski P G. The evolution and future of Earth's nitrogen cycle[J]. Science, 2010, 330(6001): 192-196. doi: 10.1126/science.1186120
[2] Reay D S, Dentener F, Smith P, et al. Global nitrogen deposition and carbon sinks[J]. Nature geoscience, 2008, 1(7): 430-437. doi: 10.1038/ngeo230
[3] Liu X, Ying Z, Han W, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013, 494(7438): 459-462. doi: 10.1038/nature11917
[4] Allison S D, Lebauer D S, Ofrecio M R, et al. Low levels of nitrogen addition stimulate decomposition by boreal forest fungi[J]. Soil Biology & Biochemistry, 2009, 41(2): 293-302.
[5] Pan Y, Birdsey R A, Fang J, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333(6045): 988-993. doi: 10.1126/science.1201609
[6] Janssens I A, Dieleman W, Luyssaert S, et al. Reduction of forest soil respiration in response to nitrogen deposition[J]. Nature Geoscience, 2010, 3(5): 315-322. doi: 10.1038/ngeo844
[7] Wu J, Liu, W, Zhang W, et al. Long-term nitrogen addition changes soil microbial community and litter decomposition rate in a subtropical forest[J]. Applied Soil Ecology, 2019, 142: 43-51. doi: 10.1016/j.apsoil.2019.05.014
[8] Zak D R, Freedman Z B, Upchurch R A, et al. Anthropogenic N deposition increases soil organic matter accumulation without altering its biochemical composition[J]. Global Change Biology, 2016, 23(2): 933-944.
[9] Chang R, Zhou W, Fang Y, et al. Anthropogenic nitrogen deposition increases soil carbon by enhancing new carbon of the soil aggregate formation[J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(3): 572-584. doi: 10.1029/2018JG004877
[10] Liu L, Greaver T. A global perspective on belowground carbon dynamics under nitrogen enrichment[J]. Ecology Letters, 2010, 13(7): 819-828. doi: 10.1111/j.1461-0248.2010.01482.x
[11] Frey S D, Ollinger S, Nadelhoffer K, et al. Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests[J]. Biogeochemistry, 2014, 121(2): 305-316. doi: 10.1007/s10533-014-0004-0
[12] Du Y, Han H, Wang Y, et al. Plant functional groups regulate soil respiration responses to nitrogen addition and mowing over a decade[J]. Functional Ecology, 2018, 32(4): 1117-1127. doi: 10.1111/1365-2435.13045
[13] Ye C, Chen D, Hall S J, et al. Reconciling multiple impacts of nitrogen enrichment on soil carbon: Plant, microbial and geochemical controls[J]. Ecology Letters, 2018, 21(8): 1162-1173. doi: 10.1111/ele.13083
[14] Cotrufo M F, Soong J L, Horton A J, et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss[J]. Nature geoscience, 2015, 8(10): 776-779. doi: 10.1038/ngeo2520
[15] Contosta A R, Frey S D, Cooper A B. Soil microbial communities vary as much over time as with chronic warming and nitrogen additions[J]. Soil Biology and Biochemistry, 2015, 88: 19-24. doi: 10.1016/j.soilbio.2015.04.013
[16] 刘彩霞, 焦如珍, 董玉红, 等. 杉木林土壤微生物区系对短期模拟氮沉降的响应[J]. 林业科学研究, 2015, 28(2):271-276.
[17] 周嘉聪, 刘小飞, 郑 永, 等. 氮沉降对中亚热带米槠天然林微生物生物量及酶活性的影响[J]. 生态学报, 2017, 37(1):127-135.
[18] Zhang T, Chen H Y H, Ruan H. Global negative effects of nitrogen deposition on soil microbes[J]. The ISME Journal, 2018, 12(7): 1817-1825. doi: 10.1038/s41396-018-0096-y
[19] Wu J, Liu W, Fan H, et al. Asynchronous responses of soil microbial community and understory plant community to simulated nitrogen deposition in a subtropical forest[J]. Ecology and Evolution, 2013, 3(11): 3895-3905. doi: 10.1002/ece3.750
[20] Lu X, Gilliam F S, Yu G, et al. Long-term nitrogen addition decreases carbon leaching in nitrogen-rich forest ecosystem[J]. Biogeosciences, 2013, 10(6): 3931-3941. doi: 10.5194/bg-10-3931-2013
[21] 佘汉基, 蔡金桓, 薛 立, 等. 模拟外源性氮磷对马占相思凋落叶分解及土壤生化特性的影响[J]. 林业科学研究, 2018, 31(2):107-113.
[22] Tu L, Hu T, Zhang J, et al. Nitrogen addition stimulates different components of soil respiration in a subtropical bamboo ecosystem[J]. Soil Biology and Biochemistry, 2013, 58: 255-264. doi: 10.1016/j.soilbio.2012.12.005
[23] Frostegård Å, Tunlid A, Bååth E. Use and misuse of PLFA measurements in soils[J]. Soil Biology and Biochemistry, 2011, 43(8): 1621-1625. doi: 10.1016/j.soilbio.2010.11.021
[24] Kazanski C E, Riggs C E, Reich P B, et al. Long-term nitrogen addition does not increase soil carbon storage or cycling across eight temperate forest and grassland sites on a sandy outwash plain[J]. Ecosystems, 2019, 22(7): 1592-1605. doi: 10.1007/s10021-019-00357-x
[25] Zhou J, Liu X, Xie J, et al. Nitrogen addition affects soil respiration primarily through changes in microbial community structure and biomass in a subtropical natural forest[J]. Forests, 2019, 10(5): 435. doi: 10.3390/f10050435
[26] Liang C, Schimel J P, Jastrow J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2017, 2(8): 1-6.
[27] Fan Y, Yang L, Zhong X, et al. N addition increased microbial residual carbon by altering soil P availability and microbial composition in a subtropical Castanopsis forest[J]. Geoderma, 2020, 375: 114470. doi: 10.1016/j.geoderma.2020.114470
[28] 邓 飞. 模拟氮沉降对中亚热带常绿阔叶林细根生物量和生产量的影响研究[D]. 福建: 福建师范大学, 2014.
[29] 邓娇娇, 朱文旭, 张 岩, 等. 辽西北风沙区不同人工林土壤真菌群落结构及功能特征[J]. 林业科学研究, 2020, 33(1):44-54.
[30] Paul E A. Soil microbiology, ecology and biochemistry[M]. Elsevier: Academic press, 2014.
[31] 费裕翀, 吴庆锥, 路 锦, 等. 林下植被管理措施对杉木大径材林土壤细菌群落结构的影响[J]. 应用生态学报, 2020, 31(2):407-416.
[32] Wan X, Huang Z, He Z, et al. Soil C: N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations[J]. Plant and Soil, 2015, 387(1-2): 103-116. doi: 10.1007/s11104-014-2277-4
[33] Liu W, Jiang L, Yang S, et al. Critical transition of soil bacterial diversity and composition triggered by nitrogen enrichment[J]. Ecology, 2020,101(8): e03053.