[1] Richard W, Katz B G, Brown. Extreme events in a changing climate: Variability is more important than averages[J]. Climatic Change, 1992, 21(3): 289-302. doi: 10.1007/BF00139728
[2] Milagros A, Jiménez, Jaksic F M,<italic> et al</italic>. Extreme climatic events change the dynamics and invasibility of semi-arid annual plant communities[J]. Ecology letters, 2011, 14(12): 1227-1235. doi: 10.1111/j.1461-0248.2011.01693.x
[3] IPCC. Climate Change 2013: the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [R]. Cambridge University Press, 2014, pp: 159-254 .
[4] Easterling D R, Meehl G A, Parmesan C,<italic> et al</italic>. Climate extremes: observations, modeling, and impacts[J]. Science, 2000, 289(5487): 2068-2074. doi: 10.1126/science.289.5487.2068
[5] Smith M D. The ecological role of climate extremes: current understanding and future prospects[J]. Journal of Ecology, 2011, 99(3): 651-655. doi: 10.1111/j.1365-2745.2011.01833.x
[6] Reichstein M, Bahn M, Ciais P,<italic> et al</italic>. Climate extremes and the carbon cycle[J]. Nature, 2013, 500(7462): 287-295. doi: 10.1038/nature12350
[7] Ciais P, Reichstein M, Viovy N, et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003[J]. Nature, 437(7058): 529-533 .
[8] Zeng N, Yoon J H, Marengo J A,<italic> et al</italic>. Causes and impacts of the 2005 Amazon drought[J]. Environmental Research Letters, 2008, 3(1): 014002.
[9] Lewis S L,Brando P M,Phillips O L,<italic> et al</italic>. The 2010 Amazon Drought[J]. Science, 2011, 331(6017): 554.
[10] Schwalm C R, Williams C A, Schaefer K,<italic> et al</italic>. Assimilation exceeds respiration sensitivity to drought: A fluxnet synthesis[J]. Global Change Biology, 2010, 16(2): 657-670. doi: 10.1111/j.1365-2486.2009.01991.x
[11] 王 丹, 吕瑜良, 徐 丽, 等. 水分和温度对若尔盖湿地和草甸土壤碳矿化的影响[J]. 生态学报, 2013, 33(20):6436-6443.
[12] Van S O, Veldkamp E, KiHler M,<italic> et al</italic>. Spatial and temporal effects of drought on soil CO<sub>2</sub> efflux in a cacao agroforestry system in Sulawesi, Indonesia[J]. Biogeosciences, 2010, 7(4): 1223-1235.
[13] 郝彦宾, 王艳芬, 崔骁勇. 干旱胁迫降低了内蒙古羊草草原的碳累积[J]. 植物生态学报, 2010, 34(8):898-906. doi: 10.3773/j.issn.1005-264x.2010.08.002
[14] Cox P M, Betts R A,<italic> et al</italic>. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model[J]. Nature, 2000, 408(6809): 184-187.
[15] Harper C W, Blair J M, Fay P A,<italic> et al</italic>. Increased rainfall variability and reduced rainfall amount decreases soil CO<sub>2</sub> flux in a grassland ecosystem[J]. Global Change Biology, 2005, 11(2): 322 − 334.
[16] Meng C, Tian D, Zeng H,<italic> et al</italic>. Global meta-analysis on the responses of soil extracellular enzyme activities to warming[J]. Science of The Total Environment, 2019, 705: 135992.
[17] Freeman C, Evans C D, Monteith D T,<italic> et al</italic>. Export of organic carbon from peat soils[J]. Nature, 2011a, 412: 785-785.
[18] Freeman C, Ostle N J, Kang H. An enzymic 'latch' on a global carbon store[J]. Nature, 2001b, 409(6817): 149.
[19] Mcnamara N P, Plant T, Oakley S,<italic> et al</italic>. Gully hotspot contribution to landscape methane (CH<sub>4</sub>) and carbon dioxide (CO<sub>2</sub>) fluxes in a northern peatland[J]. Science of the Total Environment, 2008, 404(2-3): 354-360. doi: 10.1016/j.scitotenv.2008.03.015
[20] Turetsky M R, Wieder R K, Vitt D H. Boreal peatland C fluxes under varying permafrost regimes[J]. Soil Biology & Biochemistry, 2002, 34(7): 907-912.
[21] Wright W J, Comas X, Slater L D, et al. Autonomous ground penetrating radar (GPR) measurements for exploring biogenic gas dynamics of peat soils in a northern peatland[A]. AGU Fall Metting Abstract [C]. 2011: B21A248 .
[22] Hao B Y, Cui X Y, Wang Y F,<italic> et al</italic>. Predominance of Precipitation and Temperature Controls on Ecosystem CO<sub>2</sub> Exchange in Zoige Alpine Wetlands of Southwest China[J]. Wetlands, 2011, 31(2): 413-422. doi: 10.1007/s13157-011-0151-1
[23] 张 远, 郝彦宾, 崔丽娟, 等. 极端干旱对若尔盖高原泥炭地生态系统CO<sub>2</sub>通量的影响[J]. 中国科学院大学学报, 2017, 34(4):462-470.
[24] 李明峰, 董云社, 齐玉春, 等. 极端干旱对温带草地生态系统CO<sub>2</sub>、CH<sub>4</sub>、N<sub>2</sub>O通量特征的影响[J]. 资源科学, 2004 , 26(3):89-95. doi: 10.3321/j.issn:1007-7588.2004.03.014
[25] 李新荣, 谭会娟, 何明珠, 等. 阿拉善高原灌木种的丰富度和多度格局对环境因子变化的响应: 极端干旱荒漠地区灌木多样性保育的前提[J]. 中国科学. D辑: 地球科学, 2009 , 39(4):114-125.
[26] 张继义, 赵哈林. 短期极端干旱事件干扰下退化沙质草地群落抵抗力稳定性的测度与比较[J]. 生态学报, 2009, 30(20):5456-5465.
[27] 木巴热克•阿尤普, 陈亚宁, 郝兴明, 等. 极端干旱环境下的胡杨木质部水力特征[J]. 生态学报, 2012 , 32(9):2748-2758.
[28] 刘殿君, 吴 波, 李永华, 等. 极端干旱区增雨加速泡泡刺群落土壤碳排放[J]. 生态学报, 2012, 32(17):5396-5404.
[29] 高 燕. 地下水位和土壤温度对若尔盖泥炭地CH4排放的影响[D]. 西北农林科技大学, 2016, 219(4): 56-61.
[30] 王智平, 段 毅, 杨居荣, 等. 青藏高原若尔盖沼泽潜在CH<sub>4</sub>氧化与生成的分布特征[J]. 植物生态学报, 2003 , 27(6):786-791. doi: 10.3321/j.issn:1005-264X.2003.06.009
[31] 周文昌, 索郎夺尔基, 崔丽娟, 等. 围栏禁牧与放牧对若尔盖高原泥炭地CO<sub>2</sub>和CH<sub>4</sub>排放的影响[J]. 生态环境学报, 2015, 24(2):183-189.
[32] 王长科, 吕宪国, 蔡祖聪, 等. 若尔盖高原草甸土与泥炭土氧化CH<sub>4</sub>研究[J]. 冰川冻土, 2007 , 29(4):584-588. doi: 10.3969/j.issn.1000-0240.2007.04.011
[33] Hao Y B, Kang X M, Cui X Y,<italic> et al</italic>. Verification of a threshold concept of ecologically effective precipitation pulse: From plant individuals to ecosystem[J]. Ecological Informatics, 2012, 12: 23-30. doi: 10.1016/j.ecoinf.2012.07.006
[34] Anke J, Juergen K, Michael, et al. Climate extremes initiate ecosystem-regulating functions while maintaining productivity[J]. Journal of Ecology, 99(3): 689-702
[35] 王巧环, 任玉芬, 孟 龄, 等. 元素分析仪同时测定土壤中全氮和有机碳[J]. 分析试验室, 2013, 32(10):41-45.
[36] 戴宏林, 吴小骏. 用凯氏定氮法测定植物干样品中的氮含量[J]. 江苏农学院学报, 1995, 16(3):70.
[37] 王瑞永, 刘莎莎, 王成章, 等. 不同海拔高度高寒草地土壤理化指标分析[J]. 草地学报, 2009, 17(5):621-628.
[38] 陈 伟, 杨 洋, 崔亚茹, 等. 低氮对苦荞苗期土壤碳转化酶活性的影响[J]. 干旱地区农业研究, 2019, 37(4):132-138.
[39] 何建州, 杨金燕, 田丽燕, 等. 用紫外-荧光微孔板酶检测技术测定两种土壤的酶活性[J]. 四川农业大学学报, 2012 , 30(2):60-64.
[40] Warton D I, Wright I J, Falster D S,<italic> et al</italic>. Bivariate line-fitting methods for allometry[J]. Biological Reviews, 2006, 81(2): 259-291. doi: 10.1017/S1464793106007007
[41] Sinsabaugh R L, Lauber C L, Weintraub M N,<italic> et al</italic>. Stoichiometry of soil enzyme activity at global scale[J]. Ecology Letters, 2008, 11(11): 1252-1264.
[42] Piao S L, Zhang X P, Chen A P,<italic> et al</italic>. The impacts of climate extremes on the terrestrial carbon cycle: A review[J]. Science China(Earth Sciences), 2019, 62(10): 1551-1563. doi: 10.1007/s11430-018-9363-5
[43] Rajan, Nithya, Ma as,<italic> et al</italic>. Extreme drought effects on carbon dynamics of a semiarid pasture[J]. Agronomy Journal, 2013, 105(6): 1749-1760. doi: 10.2134/agronj2013.0112
[44] Zhang L, Guo H D, Jia G S,<italic> et al</italic>. Net ecosystem productivity of temperate grasslands in northern China: An upscaling study[J]. Agricultural and Forest Meteorology, 2014, 184: 71-81. doi: 10.1016/j.agrformet.2013.09.004
[45] Rytter R C. Water use efficiency, carbon isotope discrimination and biomass production of two sugar beet varieties under well watered and dry conditions[J]. Journal of Agronomy and Crop Science, 2005, 191(6): 426-438.
[46] Niu S, Wu M, Han Y,<italic> et al</italic>. Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe[J]. New Phytologist, 2008, 177(1): 209-219.
[47] Shi Z, Thomey M L, Mowll W,<italic> et al</italic>. Differential effects of extreme drought on production and respiration: synthesis and modeling analysis[J]. Biogeosciences, 2014, 11(3): 621-633. doi: 10.5194/bg-11-621-2014
[48] Frank H, Ottmar J. Experimental summer drought reduces soil CO<sub>2</sub> effluxes and DOC leaching in Swiss grassland soils along an elevational gradient[J]. Biogeochemistry, 2014, 117(2-3): 395-412. doi: 10.1007/s10533-013-9881-x
[49] 康晓明, 崔丽娟, 郝彦宾, 等. 极端干旱对内蒙古羊草草原水分平衡的影响[J]. 应用与环境生物学报, 2015, 21(4):700-709.
[50] 张法伟, 刘安花, 李英年, 等. 青藏高原高寒湿地生态系统CO<sub>2</sub>通量[J]. 生态学报, 2008 , 28(2):453-462. doi: 10.3321/j.issn:1000-0933.2008.02.001
[51] 李英年, 孙晓敏, 赵新全, 等. 青藏高原金露梅灌丛草甸净生态系统CO<sub>2</sub>交换量的季节变异及其环境控制机制[J]. 中国科学. D辑: 地球科学, 2006, 36(S1):163-173.
[52] 李 博, 赵 斌, 彭容豪. 陆地生态系统生态学原理(中文版)[M]. 北京: 高等教育出版社 , 2005: 334-339.
[53] Van D M M K, Dolman A J P, Ciais T,<italic> et al</italic>. Drought and ecosystem carbon cycling[J]. Agricultural and Forest Meteorology, 2011, 151(7): 765-773.
[54] 伏玉玲, 于贵瑞, 王艳芬, 等. 水分胁迫对内蒙古羊草草原生态系统光合和呼吸作用的影响[J]. 中国科学. D辑: 地球科学, 2006, 36(S1):183-193.
[55] Reichstein M, Tenhunen J D, Roupsard O,<italic> et al</italic>. Severe drought effects on ecosystem CO<sub>2</sub> and H<sub>2</sub>O fluxes at three Mediterranean evergreen sites: revision of current hypotheses[J]. Global Change Biology, 2002, 8(10): 999-1017. doi: 10.1046/j.1365-2486.2002.00530.x
[56] Jonathan L, Pitchford, Wu C J,<italic> et al</italic>. Climate Change Effects on Hydrology and Ecology of Wetlands in the Mid-Atlantic Highlands[J]. Wetlands, 2012, 32(1): 21-33. doi: 10.1007/s13157-011-0259-3
[57] 于昊天, 黄时豪, 刘亚军, 等. 鄱阳湖湿地土壤酶及微生物生物量的剖面分布特征[J]. 环境科学研究, 2017, 30(11):1715-1722.
[58] Lefi E, Medrano H, Cifre J. Water uptake dynamics, photosynthesis and water use efficiency in field‐grown Medicago arborea and medicago citrina under prolonged mediterranean drought conditions[J]. Annals of Applied Biology, 2004, 144(3): 299-307. doi: 10.1111/j.1744-7348.2004.tb00345.x
[59] Creamer C A, De Menezes A B, Krull E S,<italic> et al</italic>. Microbial community structure mediates response of soil C decomposition to litter addition and warming[J]. Soil Biology and Biochemistry, 2015, 80: 175-188. doi: 10.1016/j.soilbio.2014.10.008
[60] 秦纪洪, 张文宣, 王 琴, 等. 亚高山森林土壤酶活性的温度敏感性特征[J]. 土壤学报, 2013, 50(6):1241-1245.
[61] 潘新丽, 林 波, 刘 庆. 模拟增温对川西亚高山人工林土壤有机碳含量和土壤呼吸的影响[J]. 应用生态学报, 2008 , 19(8):1637-1643.
[62] Trasar-Cepeda C, Gil-Sotres F, Leirós M C. Thermodynamic parameters of enzymes in grassland soils from Galicia, NW Spain[J]. Soil Biology and Biochemistry, 2006, 39(1): 311-319.
[63] 韩 玮, 孙晨曦, 苏 敬. 模拟增温和酸雨对水稻土酶活性及温度敏感性的影响[J]. 生态与农村环境学报, 2017, 33(12):1117-1124. doi: 10.11934/j.issn.1673-4831.2017.12.008
[64] Bardgett R D, Freeman C, Ostle N J. Microbial contributions to climate change through carbon cycle feedbacks[J]. ISME Journal, 2008, 2: 805-814. doi: 10.1038/ismej.2008.58