[1] Deng Q, Cheng X, Hui D, et al. Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China[J]. Science of The Total Environment, 2016, 541: 230-237. doi: 10.1016/j.scitotenv.2015.09.080
[2] 刘善江, 夏 雪, 陈桂梅, 等. 土壤酶的研究进展[J]. 中国农学通报, 2011, 27(21):1-7.
[3] Sinsabaugh R L, Follstad Shah J J. Ecoenzymatic stoichiometry and ecological theory[J]. Annual Review of Ecology, Evolution, and Systematics, 2012, 43(1): 313-343. doi: 10.1146/annurev-ecolsys-071112-124414
[4] Hill B H, Elonen C M, Seifert L R, et al. Microbial enzyme stoichiometry and nutrient limitation in US streams and rivers[J]. Ecological Indicators, 2012, 18: 540-551. doi: 10.1016/j.ecolind.2012.01.007
[5] Xu Z, Yu G, Zhang X, et al. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC)[J]. Soil Biology and Biochemistry, 2017, 104(1): 152-163.
[6] Sardans J, Peuelas J, Estiarte M. Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland[J]. Applied Soil Ecology, 2008, 39(2): 223-235. doi: 10.1016/j.apsoil.2007.12.011
[7] Stark S, Mnnist M K, Eskelinen A. Nutrient availability and pH jointly constrain microbial extracellular enzyme activities in nutrient-poor tundra soils[J]. Plant and Soil, 2014, 383(1/2): 373-385.
[8] Bell T H, Klironomos J N, Henry H A L. Seasonal responses of extracellular enzyme activity and microbial biomass to warming and nitrogen addition[J]. Soil Science Society of America Journal, 2010, 74(3): 820-828. doi: 10.2136/sssaj2009.0036
[9] Kardol P, Cregger M A, Campany C E, et al. Soil ecosystem functioning under climate change: plant species and community effects[J]. Ecology, 2010, 91(3): 767-781. doi: 10.1890/09-0135.1
[10] Hu N, Li H, Tang Z, et al. Community size, activity and C: N stoichiometry of soil microorganisms following reforestation in a Karst region[J]. European Journal of Soil Biology, 2016, 73: 77-8. doi: 10.1016/j.ejsobi.2016.01.007
[11] 邱勇斌, 凌高潮, 郑文华, 等. 间伐对杉木人工林不同组分碳、氮、磷含量及其生态化学计量关系的影响[J]. 林业科学研究, 2019, 32(4):64-69.
[12] 俞新妥. 中国杉木研究进展[J]. 福建林学院学报, 2006, 26(2):177-185. doi: 10.3969/j.issn.1001-389X.2006.02.019
[13] 范少辉, 盛炜彤, 马祥庆, 等. 多代连栽对不同发育阶段杉木人工林生产力的影响[J]. 林业科学研究, 2003, 16(5):560-567. doi: 10.3321/j.issn:1001-1498.2003.05.007
[14] 李惠通, 张 芸, 魏志超, 等. 不同发育阶段杉木人工林土壤肥力分析[J]. 林业科学研究, 2017, 30(2):322-328.
[15] 杨玉盛, 何宗明, 陈光水, 等. 杉木多代连栽后土壤肥力变化[J]. 土壤与环境, 2001, 10(1):35-40.
[16] 孙冬婧, 温远光, 罗应华, 等. 近自然化改造对杉木人工林物种多样性的影响[J]. 林业科学研究, 2015, 28(2):62-68.
[17] 何贵平, 陈益泰, 胡炳堂, 等. 杉木与马褂木、檫树混交林及其纯林生物量和土壤肥力研究[J]. 林业科学研究, 2001, 14(5):540-547. doi: 10.3321/j.issn:1001-1498.2001.05.013
[18] 潘云龙, 林国伟, 陈志为, 等. 杉木纯林及杉桐混交林土壤酶活性研究[J]. 热带作物学报, 2018, 39(5):846-851. doi: 10.3969/j.issn.1000-2561.2018.05.003
[19] 陆宇明, 吴东梅, 许恩兰, 等. 不同林龄杉木林下套种阔叶树对土壤磷组分的影响[J]. 水土保持学报, 2020, 34(1):275-282.
[20] Saiya-Cork K R, Sinsabaugh R L, Zak D R. The effects of long-term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil[J]. Soil Biology and Biochemistry, 2002, 34(9): 1309-1315. doi: 10.1016/S0038-0717(02)00074-3
[21] Tian J, Wei K, Condron L M, et al. Impact of land use and nutrient addition on phosphatase activities and their relationships with organic phosphorus turnover in semi-arid grassland soils[J]. Biology and Fertility of Soils, 2016, 52(5): 675-683. doi: 10.1007/s00374-016-1110-z
[22] Juan Carlos álvarez-Yépiz, Angelina M Y, Alberto Búrquez, et al. Variation in vegetation structure and soil properties related to land use history of old-growth and secondary tropical dry forests in northwestern Mexico[J]. Forest Ecology and Management, 2008, 256(3): 355-366. doi: 10.1016/j.foreco.2008.04.049
[23] Quideau S. Vegetation control on soil organic matter dynamics[J]. Organic Geochemistry, 2001, 32(2): 247-252. doi: 10.1016/S0146-6380(00)00171-6
[24] Wardle D A. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil[J]. Biological Reviews, 2008, 67(3): 321-358.
[25] Lin C, Yang Y, Guo J, et al. Fine root decomposition of evergreen broadleaved and coniferous tree species in mid-subtropical China: dynamics of dry mass, nutrient and organic fractions[J]. Plant and Soil, 2011, 338(1-2): 311-327. doi: 10.1007/s11104-010-0547-3
[26] 唐仕姗, 杨万勤, 殷 睿, 等. 中国森林生态系统凋落叶分解速率的分布特征及其控制因子[J]. 植物生态学报, 2014, 38(6):529-539.
[27] Anderson J M. Spatiotemporal effects of invertebrates on soil processes[J]. Biology and Fertility of Soils, 1988, 6(3): 216-227.
[28] Perry D A, Choquette C, Schroeder P. Nitrogen dynamics in conifer-dominated forests with and without hardwoods[J]. Canadian Journal of Forest Research, 1987, 17(11): 1434-1441. doi: 10.1139/x87-221
[29] 杨 凯, 朱教君, 张金鑫, 等. 不同林龄落叶松人工林土壤微生物生物量碳氮的季节变化[J]. 生态学报, 2009, 29(10):5500-5507. doi: 10.3321/j.issn:1000-0933.2009.10.039
[30] Pablo L P, Verónica G, Guillermo M P. Dynamics of above- and below-ground biomass and nutrient accumulation in an age sequence of Nothofagusantarctica forest of Southern Patagonia[J]. Forest Ecology and Management, 2006, 233(1): 85-99. doi: 10.1016/j.foreco.2006.06.009
[31] Sophie Z B, Katharina M K, Maria M. The application of ecological stoichiometry to plant–microbial–soil organic matter transformations[J]. Ecologica Monographs, 2015, 85(2): 133-155. doi: 10.1890/14-0777.1
[32] Fanin N, Fromin N, Buatois B, et al. An experimental test of the hypothesis of non-homeostaic consumer stoichiometry in a plant litter-microbe system[J]. Ecology Letters, 2013, 16(6): 764-772. doi: 10.1111/ele.12108
[33] Shen C, Xiong J, Zhang H, et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain[J]. Soil Biology and Biochemistry, 2013, 57: 204-211. doi: 10.1016/j.soilbio.2012.07.013
[34] Zhou X, Chen C, Wang Y, et al. Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland[J]. Science of The Total Environment, 2013, 444: 552-558. doi: 10.1016/j.scitotenv.2012.12.023
[35] 赵盼盼, 周嘉聪, 林开淼, 等. 不同海拔对福建戴云山黄山松林土壤微生物生物量和土壤酶活性的影响[J]. 生态学报, 2018, 39(8):2676-2686.
[36] 乔 航, 莫小勤, 罗艳华, 等. 不同林龄油茶人工林土壤酶化学计量及其影响因素[J]. 生态学报, 2019, 39(6):1887-1896.
[37] Sinsabaugh R L, Hill B H, Follstad Shah J J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment[J]. Nature, 2010, 468(7320): 122-122.
[38] Sinsabaugh R L, Lauber C L, Weintraub M N, et al. Stoichiometry of soil enzyme activity at global scale[J]. Ecology Letters, 2008, 11(11): 1252-1264. doi: 10.1111/j.1461-0248.2008.01245.x
[39] 张星星, 杨柳明, 陈 忠, 等. 中亚热带不同母质和森林类型土壤生态酶化学计量特征[J]. 生态学报, 2018, 36(16):5828-5836.
[40] 袁 萍, 周嘉聪, 张秋芳, 等. 中亚热带不同森林更新方式生态酶化学计量特征[J]. 生态学报, 2018, 38(18):6741-6748.
[41] 陶宝先, 张金池, 俞元春, 等. 苏南丘陵地区森林土壤酶活性季节变化[J]. 生态环境学报, 2010, 19(10):2349-2354. doi: 10.3969/j.issn.1674-5906.2010.10.015
[42] Sinsabaugh R L, Follstad Shah J J. Integrating resource utilization and temperature in metabolic scaling of riverine bacterial production[J]. Ecology, 2010, 91(5): 1455-1465. doi: 10.1890/08-2192.1
[43] Ushio M, Balser T C, Kitayama K. Effects of condensed tannins in conifer leaves on the composition and activity of the soil microbial community in a tropical montane forest[J]. Plant and Soil, 2013, 365(1-2): 157-170. doi: 10.1007/s11104-012-1365-6