[1] Zhu X, Zhang W, Jiang X, et al. Conversion of primary tropical rainforest into rubber plantation degrades the hydrological functions of forest litter: Insights from experimental study[J]. CATENA, 2021, 200: 105172. doi: 10.1016/j.catena.2021.105172
[2] Walter J, Buchmann C M, Schurr F M. Shifts in plant functional community composition under hydrological stress strongly decelerate litter decomposition[J]. Ecology and Evolution, 2020, 10(12): 5712-5724. doi: 10.1002/ece3.6310
[3] 袁秀锦, 肖文发, 潘 磊, 等. 马尾松林分结构对枯落物层和土壤层水文效应的影响[J]. 林业科学研究, 2020, 33(4):26-34.
[4] Sato Y, Kumagai T, Kume A, et al. Experimental analysis of moisture dynamics of litter layers the effects of rainfall conditions and leaf shapes[J]. Hydrological Processes, 2004, 18(16): 3007-3018. doi: 10.1002/hyp.5746
[5] Zagyvai-Kiss K A, Kalicz P, Szilágyi J, et al. On the specific water holding capacity of litter for three forest ecosystems in the eastern foothills of the Alps[J]. Agricultural and Forest Meteorology, 2019, 278: 107656. doi: 10.1016/j.agrformet.2019.107656
[6] 高 迪, 郭建斌, 王彦辉, 等. 宁夏六盘山不同林龄华北落叶松人工林枯落物水文效应[J]. 林业科学研究, 2019, 32(4):26-32.
[7] 赵一鹤, 赖建东, 杨宇明, 等. 云南丽江拉市海汇水区不同森林枯落物的持水性能[J]. 林业科学研究, 2014, 27(3):410-416.
[8] 郑金萍, 郭忠玲, 徐程扬, 等. 长白山主要次生林的枯落物现存量组成及持水特性[J]. 林业科学研究, 2011, 24(6):736-742.
[9] 刘效东, 乔玉娜, 周国逸, 等. 鼎湖山3种不同演替阶段森林凋落物的持水特性[J]. 林业科学, 2013, 49(9):8-15.
[10] Xie J, Su D. Water-Holding Characteristics of Litter in Meadow Steppes with Different Years of Fencing in Inner Mongolia, China[J]. Water, 2020, 12(9): 2374. doi: 10.3390/w12092374
[11] Bai Y, Zhou Y, Du J, et al. Effects of a broadleaf-oriented transformation of coniferous plantations on the hydrological characteristics of litter layers in subtropical China[J]. Global Ecology and Conservation, 2021, 25: e1400.
[12] 张 冉, 张兴龙, 胡海清, 等. 大兴安岭林区典型森林和草甸细小死可燃物含水率预测模型[J]. 东北林业大学学报, 2021, 49(3):74-80. doi: 10.3969/j.issn.1000-5382.2021.03.013
[13] Saglam B, Bilgili E, Kuçuk O, et al. Determination of surface fuels moisture contents based on weather conditions[J]. Forest Ecology and Management, 2006, 234: S75. doi: 10.1016/j.foreco.2006.08.107
[14] Pellizzaro G, Cesaraccio C, Duce P, et al. Influence of seasonal weather variations and vegetative cycle on live moisture content and ignitability in Mediterranean maquis species[J]. Forest Ecology and Management, 2006, 234: S111. doi: 10.1016/j.foreco.2006.08.147
[15] 解国磊, 丁新景, 敬如岩, 等. 春季降雨对鲁东低山丘陵区主要森林类型地表可燃物含水率的影响[J]. 西北林学院学报, 2016, 31(5):171-177. doi: 10.3969/j.issn.1001-7461.2016.05.28
[16] 张 恒, 金 森, 邸雪颖. 大兴安岭森林凋落物含水率的季节动态与预测[J]. 林业科学研究, 2014, 27(5):683-688.
[17] 官丽莉, 周国逸, 张德强, 等. 鼎湖山南亚热带常绿阔叶林凋落物量20年动态研究[J]. 植物生态学报, 2004, 28(4):449-456. doi: 10.3321/j.issn:1005-264X.2004.04.002
[18] 邵宜晶, 俞梦笑, 江 军, 等. 鼎湖山3种演替阶段森林土壤C、N、P现状及动态[J]. 热带亚热带植物学报, 2017, 25(6):523-530. doi: 10.11926/jtsb.3748
[19] 刘佩伶, 陈 乐, 刘效东, 等. 鼎湖山不同演替阶段森林土壤水分的时空变异[J]. 生态学报, 2021, 41(5):1-10.
[20] 周 雪. 黑龙江省气象因子与落叶松植被净初级生产力相关性分析[J]. 湖北农业科学, 2021, 60(9):1-4.
[21] 林永标, 申卫军, 彭少麟, 等. 南亚热带鹤山三种人工林小气候效应对比[J]. 生态学报, 2003, 23(8):1657-1666. doi: 10.3321/j.issn:1000-0933.2003.08.025
[22] Huang C, Liang Y, He H S, et al. Sensitivity of aboveground biomass and species composition to climate change in boreal forests of Northeastern China[J]. Ecological Modelling, 2021, 445: 109472. doi: 10.1016/j.ecolmodel.2021.109472
[23] De Long J R, Dorrepaal E, Kardol P, et al. Understory plant functional groups and litter species identity are stronger drivers of litter decomposition than warming along a boreal forest post-fire successional gradient[J]. Soil Biology and Biochemistry, 2016, 98: 159-170. doi: 10.1016/j.soilbio.2016.04.009
[24] 温 丁, 何念鹏. 中国森林和草地凋落物现存量的空间分布格局及其控制因素[J]. 生态学报, 2016, 36(10):2876-2884.
[25] Chuvieco E, Cocero D, Riaño D, et al. Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating[J]. Remote Sensing of Environment, 2004, 92(3): 322-331. doi: 10.1016/j.rse.2004.01.019
[26] Viney N R. A Review of Fine Fuel Moisture Modelling[J]. International Journal of Wildland Fire, 1991, 1(4): 215-234. doi: 10.1071/WF9910215
[27] 闫俊华, 周国逸, 唐旭利, 等. 鼎湖山3种演替群落凋落物及其水分特征对比研究[J]. 应用生态学报, 2001, 12(4):509-512. doi: 10.3321/j.issn:1001-9332.2001.04.007
[28] 刘效东, 周国逸, 陈修治, 等. 南亚热带森林演替过程中小气候的改变及对气候变化的响应[J]. 生态学报, 2014, 34(10):2755-2764.
[29] 张运林. 老爷岭典型林分内地表不同层可燃物含水率动态变化及湿度码预测模型适用性[J]. 东北林业大学学报, 2021, 49(3):67-73. doi: 10.3969/j.issn.1000-5382.2021.03.012
[30] 张大明, 杨雨春, 张维胜, 等. 可燃物含水率与气象因子相关关系预测模型的研究[J]. 吉林林业科技, 2010, 39(3):27-30. doi: 10.3969/j.issn.1005-7129.2010.03.009
[31] Flannigan M D, Wotton B M, Marshall G A, et al. Fuel moisture sensitivity to temperature and precipitation: climate change implications[J]. Climatic Change, 2016, 134(1-2): 59-71. doi: 10.1007/s10584-015-1521-0
[32] Nyman P, Metzen D, Noske P J, et al. Quantifying the effects of topographic aspect on moisture and temperature in fine surface fuel[J]. International Journal of Wildland Fire, 2015, 24(8): 1129-1142. doi: 10.1071/WF14195
[33] Jiménez-Pinilla P, Doerr S H, Ahn S, et al. Effects of relative humidity on the water repellency of fire-affected soils[J]. CATENA, 2016, 138: 68-76. doi: 10.1016/j.catena.2015.11.012
[34] 张增信, 闵俊杰, 闫少锋, 等. 苏南丘陵森林枯落物含水量及其影响因素分析[J]. 水土保持通报, 2011, 31(1):6-10.
[35] 李海洋, 胡海清, 孙 龙. 我国森林死可燃物含水率与气象和土壤因子关系模型研究[J]. 森林工程, 2016, 32(3):1-6. doi: 10.3969/j.issn.1001-005X.2016.03.001
[36] Zhao L, Yebra M, van Dijk A I J M, et al. The influence of soil moisture on surface and sub-surface litter fuel moisture simulation at five Australian sites[J]. Agricultural and Forest Meteorology, 2021, 298-299: 108282. doi: 10.1016/j.agrformet.2020.108282