[1] Vanoni M, Bugmann H, Nötzli M, et al. Drought and frost contribute to abrupt growth decreases before tree mortality in nine temperate tree species[J]. Forest Ecology and Management, 2016, 382(2): 51-63.
[2] 胡晓龙. 林分枯损模型的研究[J]. 林业科学研究, 1996, 9(5):86-90.
[3] Kobe R K, Coates K D. Models of sapling mortality as a function of growth to characterize inter-specific variation in shade tolerance of eight tree species of northwestern British Columbia[J]. Canadian Journal of Forest Research, 1997, 27(2): 227-236. doi: 10.1139/x96-182
[4] Zhao D, Borders B, Wang M, et al. Modeling mortality of second-rotation loblolly pine plantations in the Piedmont/ Upper Coastal Plain and Lower Coastal Plain of the southern United States[J]. Forest Ecology and Management, 2007, 252(1-3): 132-143. doi: 10.1016/j.foreco.2007.06.030
[5] Boeck A, Dieler J, Biber P, et al. Predicting tree mortality for European beech in southern Germany using spatially explicit competition indices[J]. Forest Science, 2014, 60(4): 613-622. doi: 10.5849/forsci.12-133
[6] Fortin M, Bédard S, DeBlois J, et al. Predicting individual tree mortality in northern hardwood stands under uneven-aged management in southern Québec, Canada[J]. Annual of Forest Science, 2008, 65(2): 205-217. doi: 10.1051/forest:2007088
[7] Groom J D, Hann D W, Temesgen H. Evaluation of mixed-effects models for predicting Douglas-fir mortality[J]. Forest Ecology and Management, 2012, 276(2): 139-145.
[8] Wu H, Franklin S B, Liu J M, et al. Relative importance of density dependence and topography on tree mortality in a subtropical mountain forest[J]. Forest Ecology and Management, 2017, 384(2): 169-179.
[9] 王 涛, 董利虎, 李凤日. 基于混合效应的杂种落叶松人工幼龄林单木枯损模型[J]. 北京林业大学学报, 2018, 40(10):1-12.
[10] Yao X H, Titus S J, Ellen MacDonald S. A generalized logistic model of individual tree mortality for aspen, white spruce, and lodgepole pine in Alberta mixed wood forests[J]. Canadian Journal of Forest Research, 2001, 31(2): 283-291.
[11] Sikström Ulf, Jansson G, Weslien J. Predicting the mortality of Pinus sylvestris attacked by Gremmeniella abietina and occurrence of Tomicus piniperda colonization[J]. Canadian Journal of Forest Research, 2005, 35(5): 860-867.
[12] Das A, Battles J, Stephenson N L, et al. The contribution of competition to tree mortality in old-growth coniferous forests[J]. Forest Ecology and Management, 2011, 261(1): 1203-1213.
[13] Hurst J M, Stewart G H, Perry G L, et al. Determinants of tree mortality in mixed old-growth Nothofagus forest[J]. Forest Ecology and Management, 2012, 270(2): 189-199.
[14] Wang W F, Peng C H, Kneeshaw D D, et al. Drought-induced tree mortality: ecological consequences, causes, and modeling[J]. Environment Revive, 2012, 20(2): 109-121. doi: 10.1139/a2012-004
[15] Yaussy D A, Iverson L R, Matthews S N. Competition and climate affects US hardwood-forest tree mortality[J]. Forest Science, 2012, 59(4): 416-430.
[16] Zhang X Q, Cao Q V, Duan A G, et al. Modeling tree mortality in relation to climate, initial planting density, and competition in Chinese fir plantations using a Bayesian logistic multilevel method[J]. Canadian Journal of Forest Research, 2017, 47(9): 1278-1285. doi: 10.1139/cjfr-2017-0215
[17] Sproull G J. Adamus M, Bukowski M, et al. Tree and stand-level patterns and predictors of Norway spruce mortality caused by bark beetle infestation in the Tatra Mountains[J]. Forest Ecology and Management, 2015, 354(2): 261-271.
[18] 于顺利, 马克平, 陈灵芝, 等. 蒙古栎及蒙古栎林的研究概况[C]. 面向21世纪的中国生物多样性保护-第三届全国生物多样性保护与持续利用研讨会论文集, 1998: 436-443.
[19] 马 武, 雷相东, 徐 光, 等. 蒙古栎天然林单木生长模型研究—Ⅲ. 单木枯死模型[J]. 西北农林科技大学学报: 自然科学版, 2015, 43(4):59-64, 72.
[20] Wang T, Wang G, Innes J L, et al. ClimateAP: an application for dynamic local downscaling of historical and future climate data in Asia Pacific[J]. Front Agriculture Science Engineer, 2017, 4(4): 448-458. doi: 10.15302/J-FASE-2017172
[21] 康萌萌. 广义线性混合模型及其SAS实现[J]. 统计教育, 2009, 121(10):50-54.
[22] Burnham K P, Anderson D R. Model Selection and Multi-model Inference: A Practical Information-theoretic Approach, 2nd edn[M]. Springer, 2002, New York.
[23] 李春明. 基于两层次线性混合效应模型的杉木林单木胸径生长量模型[J]. 林业科学, 2012, 48(3):66-73. doi: 10.11707/j.1001-7488.20120311
[24] Fielding A H, Bell J F. A review of methods for the assessment of prediction errors in conservation presence/absence models[J]. Environment Conserve, 1997, 24(1): 38-49. doi: 10.1017/S0376892997000088
[25] Monserud R A, Sterba H. Modeling individual tree mortality for Austrian forest species[J]. Forest Ecology and Management, 1999, 113(2-3): 109-123. doi: 10.1016/S0378-1127(98)00419-8
[26] Ganio L M, Progar R A. Mortality predictions of fire-injured large Douglas-fir and ponderosa pine in Oregon and Washington, USA[J]. Forest Ecology and Management., 2017, 390(2): 47-67.
[27] Vonesh E F, Chinchilli V M. Linear and Nonlinear Models for the Analysis of Repeated Measurements[M]. New York: Marcel Dekker. 1997.
[28] Temesgen H, Monleon V J, Hann D W. Analysis and comparison of nonlinear tree height prediction strategies for Douglas-fir forests[J]. Canadian Journal of Forest Research, 2008, 38(7): 553-565.
[29] Csilléry K, Seignobosc M, Lafond V. Estimating long-term tree mortality rate time series by combining data from periodic inventories and harvest reports in a Bayesian state-space model[J]. Forest Ecology and Management, 2013, 292(2): 64-74.
[30] Yang Y, Titus S J, Huang S. Modeling individual tree mortality for white spruce in Alberta[J]. Ecological Modeling, 2003, 163(3): 209-222. doi: 10.1016/S0304-3800(03)00008-5
[31] Allen C D, Macalady A K, Chenchouni H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J]. Forest Ecology and Management, 2010, 259(4): 660-684. doi: 10.1016/j.foreco.2009.09.001
[32] Zhang X, Lei Y, Pang Y, et al. Tree mortality in response to climate change induced drought across Beijing, China[J]. Climate Change, 2014, 124(1-2): 179-190. doi: 10.1007/s10584-014-1089-0
[33] Chen C, Weiskittel A, Bataineh M, et al. Even low levels of spruce budworm defoliation affect mortality and ingrowth but net growth is more driven by competition[J]. Canadian Journal of Forest Research, 2017, 47(11): 1546-1556. doi: 10.1139/cjfr-2017-0012