[1] 张宏达.华夏植物区系的金花茶组[J].中山大学学报:自然科学版, 1979, 18(3): 69-74.
[2] 傅立国.中国植物红皮书--稀有濒危植物:第一册[M].北京:科学出版社, 1992.
[3] Lv J, Chen R, Zhang M, et al. Plant regeneration via somatic embryogenesis and shoot organogenesis from immature cotyledons of Camellia nitidissima Chi[J]. Journal of Plant Physiology, 2013, 170(13): 1202-1211. doi: 10.1016/j.jplph.2013.03.019
[4] He D Y, Li X Y, Sai X, et al. Camellia nitidissima CW Chi: a review of botany, chemistry, and pharmacology[J]. Phytochemistry Reviews, 2018, 17(2):327-349. doi: 10.1007/s11101-017-9537-x
[5] Tran N, Le N, Hai N.越南三岛国家自然公园的金花茶[C].广西南宁: 中国广西(南宁)第三届金花茶国际学术论坛, 2013: 9-14.
[6] 王坤, 黄晓露, 梁晓静, 等.11种金花茶组植物叶片活性成分含量对比[J].经济林研究, 2018, 36(1): 110-114.
[7] 段宝利, 吕艳伟, 尹春英, 等.高光和低光下木本植物形态和生理可塑性响应[J].应用与环境生物学报, 2005, 11(2): 238-245. doi: 10.3321/j.issn:1006-687X.2005.02.027
[8] 龚红恩, 丁怡飞, 姚小华, 等.LED光质对油茶苗生长和光合特性的影响[J].林业科学研究, 2018, 31(2): 176-182.
[9] 郭晓荣, 曹坤芳, 许再富, 等.热带雨林不同生态习性树种幼苗光合作用和抗氧化酶对生长光环境的反应[J].应用生态学报, 2004, 15(3): 377-381. doi: 10.3321/j.issn:1001-9332.2004.03.005
[10] 谷畴, 赵平, 曾小平, 等.不同光强下焕镛木和观光木的光合参数变化[J].植物生态学报, 2002, 26(3): 355-362. doi: 10.3321/j.issn:1005-264X.2002.03.016
[11] 韦霄, 柴胜丰, 蒋运生, 等.珍稀濒危植物金花茶种子繁殖和生物学特性研究[J].广西植物, 2010, 30(2): 215-219. doi: 10.3969/j.issn.1000-3142.2010.02.014
[12] 蔡兴新, 何芬, 冯家平, 等.我国金花茶繁育研究进展[J].热带林业, 2015, 43(3): 20-22. doi: 10.3969/j.issn.1672-0938.2015.03.006
[13] Wang B, Ge L, Mo J G, et al. Essential oils and ethanol extract from Camellia nitidissima and evaluation of their biological activity.[J]. International Journal of Molecular Medicine, 2018, 41 (5): 2793-2801.
[14] Hou XY, Du HZ, Yang R, et al. The antitumor activity screening of chemical constituents from Camellia nitidissima Chi.[J]. Journal of food science and technology, 2018, 55 (12): 5075-5081. doi: 10.1007/s13197-018-3446-x
[15] 柴胜丰, 庄雪影, 王满莲, 等.濒危植物毛瓣金花茶与其同属广布种茶光合特性的比较[J].广西植物, 2015, 35(5): 623-630.
[16] 杨期和, 李旭群, 杨和生, 等.金花茶幼苗光合生理生态特性研究[J].北京林业大学学报, 2010, 32(2): 57-63. doi: 10.3969/j.issn.1671-6116.2010.02.012
[17] Wei X, Jiang Y S, Jiang S Y, et al. Photosynthetic characteristics of an endangered species Camellia nitidissima and its widespread congener Camellia sinensis[J]. Photosynthetica, 2008, 46(2):313-314.
[18] 柴胜丰, 韦霄, 史艳财, 等.强光胁迫对濒危植物金花茶幼苗生长和叶绿素荧光参数的影响[J].植物研究, 2012, 32(2): 159-164.
[19] 柴胜丰, 唐健民, 王满莲, 等.干旱胁迫对金花茶幼苗光合生理特性的影响[J].西北植物学报, 2015, 35(2): 322-328.
[20] 黄绢, 陈存, 张伟溪, 等.干旱胁迫对转JERF36银中杨苗木叶片解剖结构及光合特性的影响[J].林业科学, 2017, 53(5): 8-15.
[21] 张志安, 陈展宇.植物生理学试验技术[M].长春:吉林大学出版社, 2008.
[22] Russo S E, Cannon W L, Elowsky C, et al. Variation in leaf stomatal traits of 28 tree species in relation to gas exchange along an edaphic gradient in a Bornean rain forest[J]. American Journal of Botany, 2010, 97 (7): 1-12.
[23] 高平珍, 陈双林, 郭子武, 等.毛竹林下苦参和决明幼苗光合作用光响应模型比较[J].林业科学研究, 2018, 31(2): 156-163.
[24] 曾小华.遮荫对野生峨眉凤仙花的影响[D].雅安: 四川农业大学, 2016.
[25] Kurets V K, Drosdov S N, Popov E G, et al. The temperature gradient air-soil as a factor in the optimization of net photosynthesis in whole plants[J]. Russian Journal of Plant Physiology, 2003, 50(1): 72-78.
[26] 郑元, 赵忠, 周慧, 等.晴天和阴天对刺槐光合生理特性的影响[J].林业科学, 2011, 47(5): 60-67.
[27] Terashima I, Hanba Y T, Tholen D, et al. Leaf functional anatomy in relation to photosynthesis[J]. Plant PhysiologiaPlantarum, 2011, 155(1): 108-116.
[28] Cleland R E, Melis A, Neale P J. Mechanism of photoinhibition: photochemical reaction center inactivation in systemⅡofchloroplasts[J]. Photosynthesis Research, 1986, 9(1-2): 79-88. doi: 10.1007/BF00029734
[29] Poorter H. Interspecific variation in the growth response of plants to an elevated ambient CO2concentration[J]. Vegetatio, 1993, 5(1): 77-97.
[30] 陈模舜, 柯世省.天台鹅耳枥叶片的解剖结构和光合特性对光照的适应[J].林业科学, 2013, 49(2): 46-53.
[31] 吕晋慧, 王玄, 冯雁梦, 等.遮荫对金莲花光合特性和叶片解剖特征的影响[J].生态学报, 2012, 32(19): 6033-6043.
[32] Richardson A D, Berlyn G P. Spectral reflectance and photosynthetic properties of Betulapapyrifera(Betulaceae) leaves along an elevational gradient on Mt. Mansfield, Vermont, USA[J]. American Journal of Botany, 2002, 89(1): 88-94.
[33] 束际林.茶树叶片解剖结构鉴定的原理与技术[J].中国茶叶, 1995, 17 (1): 2-4.
[34] Bacelar E A, Correia C M, Moutinho-Pereira J M, et al. Sclerophylly and leaf anatomical traits of five field-grown olive cultivars growing under drought conditions[J]. Tree Physiology, 2004, 24 (2):233-239.
[35] Chartzoulakis K, Patskas A, Kofidis G, et al. Water stress affectsleaf anatomy, gas exchange, water relations and growth of twoavocado cultivars[J]. ScientiaHorticulturae, 2002, 95(1): 39-50.
[36] Evans J R, Loreto F. Acquisition and diffusion of CO2 in higher plant leaves[J]. Photosynthesis: physiology and metabolism, 2000: 321-351.
[37] Wittmann C, Aschan G, Pfanz H. Leaf and twig photosynthesis of young beech (Fagussylvatica) and aspen (Populustremula) trees grown under different light regime[J]. Basic and Applied Ecology, 2001, 2(2): 145-154. doi: 10.1078/1439-1791-00047
[38] 闫小莉, 王德炉.遮荫对苦丁茶树叶片特性及光合特性的影响[J].生态学报, 2014, 34(13): 3538-3547.
[39] Zhang Y J, Yan F, Gao H, et al. Chlorophyll content, leaf gas exchange and growth of oriental lily as affected by shading[J]. RussianJournal of Plant Physiology, 2015, 62(3): 334-339. doi: 10.1134/S1021443715030206
[40] Huang C J, Wei G, Jie Y C, et al. Effect of shade on plant traits, gas exchange and chlorophyll content in four ramie cultivars[J]. Photosynthetica, 2016, 54(3): 390-395. doi: 10.1007/s11099-016-0186-x