[1] 张绮纹, 李金花. 杨树工业用材林新品种[M]. 北京: 中国林业出版社, 2003.
[2] 苏晓华, 丁昌俊, 马常耕. 我国杨树育种的研究进展及对策[J]. 林业科学研究, 2010, 23(1):31-37.
[3] 李金花, 张绮纹, 苏晓华, 等. 美洲黑杨与不同种源青杨杂种苗叶片和生长性状多水平变异研究[J]. 林业科学研究, 2002, 15(1): 76-82.
[4] 王祎娜, 黄 洁, 杨重法. 木薯叶面积预测模型研究[J]. 热带作物学报, 2015, 36(6):1025-1029. doi: 10.3969/j.issn.1000-2561.2015.06.003
[5] 李小琴, 张凤良, 毛常丽, 等. 琴叶风吹楠叶片性状变异分析[J]. 西北林学院学报, 2017, 32(2):143-149. doi: 10.3969/j.issn.1001-7461.2017.02.24
[6] 胡晓静, 宋于洋, 王 伟. 杨树无性系叶面积测定模型的建立[J]. 湖北农业科学, 2015, 54(22):5736-5739.
[7] Alfas N, Marron N, Ceulemans R. Variability in Populus leaf anatomy and morphology in relation to canopy position, biomass production, and varietal taxon[J]. Annals of Forest Science, 2007, 64(5): 521-532. doi: 10.1051/forest:2007029
[8] 李金花, 刘喜荣, 卢孟柱, 等. 黑杨派无性系不同冠层叶片性状变异和生长选择[J]. 林业科学, 2015, 51(1):55-65.
[9] Gebauer R, Vanbeveren S, Volarik D, et al. Petiole and leaf traits of poplar in relation to parentage and biomass yield[J]. Forest Ecology and Management, 2016, 362: 1-9.
[10] 丁昌俊, 黄秦军, 张冰玉, 等. 北方型美洲黑杨不同无性系重要性状评价[J]. 林业科学研究, 2016, 29(3):331-339. doi: 10.3969/j.issn.1001-1498.2016.03.004
[11] 肖 强, 叶文景, 朱 珠, 等. 利用数码相机和Photoshop软件非破坏性测定叶面积的简便方法[J]. 生态学杂志, 2005, 24(6):711-714. doi: 10.3321/j.issn:1000-4890.2005.06.026
[12] 戴志聪, 杜道林, 司春灿, 等. 用扫描仪及Image J软件精确测量叶片形态数量特征的方法[J]. 广西植物, 2009, 29(3):342-347. doi: 10.3969/j.issn.1000-3142.2009.03.013
[13] 王晓彬, 张仁祖, 费 松, 等. 利用扫描仪测量作物叶面积的模式选择与实现技术[J]. 气象科技, 2016, 44(4):675-679. doi: 10.3969/j.issn.1671-6345.2016.04.023
[14] 高建昌, 郭广君, 国艳梅, 等. 平台扫描仪结合Image J软件测定番茄叶面积[J]. 中国蔬菜, 2011(2):73-77.
[15] 李 乐, 钟 迪, 贾宝军, 等. 蒙古栎叶面积的数字图像法测定[J]. 西北林学院学报, 2016, 31(6):96-103. doi: 10.3969/j.issn.1001-7461.2016.06.17
[16] Weight C, Parnham D, Waites R. LeafAnalyser: a computational method for rapid and large-scale analyses of leaf shape variation[J]. The Plant Journal, 2008, 53(3): 578-586.
[17] 宋 佳, 侯 盟, 鲁四海, 等. 一种基于标志点的叶片几何形态分析方法[J]. 兰州大学学报:自然科学版, 2015, 51(5):705-710.
[18] Iwata H, Ukai Y. SHAPE: a computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors[J]. J. Hered, 2002, 93(5): 384-385. doi: 10.1093/jhered/93.5.384
[19] Bylesjo M, Segura V, Soolanayakanahally R Y, et al. LAMINA: a tool for rapid quantification of leaf size and shape parameters[J]. BMC Plant Biol, 2008, 8: 82. doi: 10.1186/1471-2229-8-82
[20] Klingenberg C P. Morpho J: an integrated softwarepackage for geometric morphometrics[J]. MolecularEcology Resources, 2011, 11(2): 353-357.
[21] Maloof J N, Nozue K, Mumbach M R, et al. LeafJ: anImageJ plugin for semi-automated leaf shape measurement[J]. J. Vis. Exp., 2013: e50028.
[22] Liao F Q, Peng J L, Chen R J. LeafletAnalyzer, an automated software for quantifying, comparingand classifying blade and serration features of compound Leaves during development, and among induced mutants and natural variants in the legume medicago truncatula[J]. Frontiers in Plant Science, 2017, 8: 915.
[23] Schaal B A, O Kane S L, Rogstad S H. DNA variation in plant populations[J]. Trends Ecol Evol, 1991, 6(10): 329-333. doi: 10.1016/0169-5347(91)90041-U
[24] 成星奇,贾慧霞,孙佩,张亚红,胡建军. 丹红杨x通辽1号杨杂交子代叶形性状的遗传变异分析[J]. 林业科学研究, 2019, 32(2):100-110.
[25] Du Q, Xu B, Gong C, et al. Variation in growth, leaf, and wood property traits of Chinese white poplar (Populus tomentosa), a major industrial tree species in Northern China[J]. Canadian Journal of Forest Reserach, 2014, 44(4): 326-339. doi: 10.1139/cjfr-2013-0416
[26] Guet J, Fabbrini F, Fichot R, et al. Genetic variation for leaf morphology, leaf structure and leaf carbon isotope discrimination in Ruropean populutions of black poplar (Populus nigra L.)[J]. Tree Physiology, 2015, 35(8): 850. doi: 10.1093/treephys/tpv056
[27] Drost D R, Puranik S, Novaes E, et al. Genetical genomics of Populus leaf shape variationg[J]. BMC Plant Biology, 2015, 15(1):1-10. doi: 10.1186/S12870-015-0557-7