[1] Luo M, Gao Z, Li H, et al. Selection of reference genes for miRNA qRT-PCR under abiotic stress in grapevine[J]. Scientific Reports, 2018, 8(1): 4444. doi: 10.1038/s41598-018-22743-6.
[2] Artico S, Nardeli S M, Brilhante O, et al. Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data[J]. Bmc Plant Biology, 2010, 10(1): 49-56. doi: 10.1186/1471-2229-10-49
[3] Saddhe A A, Malvankar M R, Kumar K. Selection of reference genes for quantitative real-time PCR analysis in halophytic plant Rhizophora apiculata[J]. Peerj, 2018, 6: e5226. doi: 10.7717/peerj.5226. eCollection 2018.
[4] Vanguilder H D, Vrana K E, Freeman W M. Twenty-five years of quantitative PCR for gene expression analysis[J]. Biotechniques, 2008, 44(5): 619-626. doi: 10.2144/000112776
[5] Huis R, Hawkins S, Neutelings G. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimumL.)[J]. Bmc Plant Biology, 2010, 10(1): 71-79. doi: 10.1186/1471-2229-10-71
[6] Xia W, Xiao M, Huang L, et al. Identification of the valid reference genes for quantitative RT-PCR in annual ryegrass (Lolium multiflorum) under salt stress[J]. Molecules, 2009, 20(3): 4833-4847.
[7] Yin Q Y, Chen S F, Guo W, et al. Pronounced genetic differentiation in Fokienia hodginsii revealed by simple sequence repeat markers[J]. Ecology and evolution., 2018, 8(22): 10938-10951. doi: 10.1002/ece3.4560
[8] 周成城, 徐文达, 陈凌艳, 等. 福建柏种质资源的保护和利用研究进展[J]. 亚热带农业研究, 2019, 15(4):271-278.
[9] Chen X, Chen H, Yuan J S, et al. The rice terpene synthase gene OsTPS19 functions as an (S)-limonene synthase in planta and its overexpression leads to enhanced resistance to the blast fungus Magnaporthe oryzae[J]. Plant Biotechnology Journal, 2018, 16(10): 1778-1787. doi: 10.1111/pbi.12914
[10] Vandesompele J, De Peter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biology, 2002, 3(7): research0034.1.
[11] Andersen C L, Jensen J L, Ørntoft T F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets[J]. Cancer Research, 2004, 64(15): 5245-5250. doi: 10.1158/0008-5472.CAN-04-0496
[12] Pfaffl M W, Tichopad A, Prgomet C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-Based tool using pair-wise correlations[J]. Biotechnology Letters, 2004, 26(6): 509-515. doi: 10.1023/B:BILE.0000019559.84305.47
[13] 叶友杰, 谢德金, 杨德明, 等. 巴戟天实时荧光定量PCR内参基因的选择[J]. 中草药, 2020, 51(4):1060-1068. doi: 10.7501/j.issn.0253-2670.2020.04.033
[14] 张 颖, 陈婉婷, 陈冉红, 等. 杉木实时荧光定量PCR分析中内参基因的选择[J]. 林业科学研究, 2019, 32(2):65-72.
[15] Wu Y, Tian Q, Huang W, et al. Identification and evaluation of reference genes for quantitative real-time PCR analysis in Passiflora edulis under stem rot condition.[J]. Molecular biology reports, 2020, 47(4): 2951-2962. doi: 10.1007/s11033-020-05385-8
[16] Wei L, Miao H, Zhao R, et al. Identification and testing of reference genes for Sesame gene expression analysis by quantitative real-time PCR[J]. Planta, 2013, 237(3): 873-889. doi: 10.1007/s00425-012-1805-9
[17] 宋晓波, 常英英, 刘 昊, 等. 核桃不定根发生阶段内参基因筛选与关键基因表达分析[J]. 园艺学报, 2019, 46(10):1907-1918.
[18] 张燕梅, 王瑞芳, 杨子平, 等. 剑麻内参基因筛选与稳定表达分析[J]. 热带作物学报, 2019, 40(11):2166-2173. doi: 10.3969/j.issn.1000-2561.2019.11.010
[19] 张 玥, 陈 娟, 谢泰祥, 等. 多花兰实时荧光定量PCR内参基因的筛选[J]. 分子植物育种, 2019, 17(24):8163-8169.
[20] 晋海军, 王海霞, 刘绍红, 等. 川续断根实时荧光定量PCR内参基因的筛选[J]. 分子植物育种, 2018, 16(24):7998-8004.
[21] 吝月爱. 玉米在非生物胁迫和激素处理条件下实时荧光定量PCR内参基因的选择[D]. 四川: 四川农业大学, 2012: 42-46.
[22] Deng L, Wu Y, Li J, et al. Screening reliable reference genes for RT-qPCR analysis of gene expression in Moringa oleifera[J]. PLoS One, 2016, 11(8): e0159458. doi: 10.1371/journal.pone.0159458
[23] Nicholls C, Li H, Liu J. GAPDH: A common enzyme with uncommon functions[J]. Clinical Experimental Pharmacology Physiology, 2012, 39(8): 674-679. doi: 10.1111/j.1440-1681.2011.05599.x
[24] Chen C, Chen R, Wu S Y, et al. Genome-wide analysis of Glycine soja ubiquitin (UBQ) genes and functional analysis of GsUBQ10 in response to alkaline stress[J]. Physiologia Plantarum, 2018, 164(3): 268-278. doi: 10.1111/ppl.12719
[25] Fan C, Ma J, Guo Q, et al. Selection of Reference Genes for Quantitative Real-Time PCR in Bamboo (Phyllostachys edulis)[J]. Plos One, 2013, 8(2): e56573. doi: 10.1371/journal.pone.0056573
[26] Cui B, Smooker P M, Rouch D A, et al. Selection of suitable reference genes for gene expression studies in Staphylococcus capitis during growth under erythromycin stress[J]. Molecular Genetics Genomics, 2016, 291(4): 1795-1811. doi: 10.1007/s00438-016-1197-9
[27] Xiao Z, Sun X, Liu X, et al. Selection of reliable reference genes for gene expression studies on Rhododendron molle G. Don[J]. Frontiers in Plant Science, 2016, 7: 1547-1552.
[28] Faccioli P, Ciceri G P, Provero P, et al. A combined strategy of “in silico” transcriptome analysis and web search engine optimization allows an agile identification of reference genes suitable for normalization in gene expression studies[J]. Plant Molecular Biology, 2007, 63(5): 679-688. doi: 10.1007/s11103-006-9116-9