[1] 汪业勖, 赵士洞, 牛 栋. 陆地土壤碳循环的研究动态[J]. 生态学杂志, 1999, 18(5):29-35.
[2] 金 峰, 杨 浩, 赵其国. 土壤有机碳储量及影响因素研究进展[J]. 土壤, 2000(1):12-18.
[3] 李常准, 陈立新, 段文标, 等. 凋落物处理对不同林型土壤有机碳全氮全磷的影响[J]. 中国水土保持科学, 2020, 18(1):100-109.
[4] 胡肄慧, 陈灵芝, 陈清朗, 等. 几种树木枯叶分解速率的试验研究[J]. 植物生态学与地植物学学报, 1987, 11(2):124-132.
[5] WANG B, BLONDEEL H, BAETEN L, et al. Direct and understorey-mediated indirect effects of human-induced environmental changes on litter decomposition in temperate forest[J]. Soil Biology and Biochemistry, 2019, 138: 107579. doi: 10.1016/j.soilbio.2019.107579
[6] 代松家, 周晨霓, 段 斐, 等. 组分和生境差异对藏东南原始冷杉林凋落物分解和养分释放特征的影响[J]. 中国水土保持科学(中英文), 2020, 18(6):72-80.
[7] HEIM A, FREY B. Early stage litter decomposition rates for Swiss forests[J]. Biogeochemistry, 2004, 70(3): 299-313. doi: 10.1007/s10533-003-0844-5
[8] DJUKIC I, KEPFER-ROJAS S, SCHMIDT I K, et al. Early stage litter decomposition across biomes[J]. Science of the Total Environment, 2018, 628-629: 1369-1394. doi: 10.1016/j.scitotenv.2018.01.012
[9] 鲁 昱, 崔莎莎, 李文洋, 等. 三种常见挺水植物凋落物的分解动态及养分释放规律[J]. 植物科学学报, 2023, 41(1):17-25.
[10] 梁嘉玲, 莫维维, 陆湘云, 等. 海岸带3种林分类型凋落物-土壤-酶活性动态变化[J]. 森林与环境学报, 2022, 42(5):521-528.
[11] 牛喜妹, 李佳南, 王 平, 等. 羊草地上不同性状凋落物分解对土壤碳组分的影响[J]. 环境生态学, 2022, 4(9):54-60.
[12] BA Z D, GEER T, DU H S, et al. Effects of different litter treatments on soil microbial biomass carbon and nitrogen in temperate grassland[J]. Journal of Biotech Research, 2022, 13: 260-268.
[13] LUAN J W, LI S Y, DONG W, et al. Litter decomposition affected by bamboo expansion is modulated by litter-mixing and microbial composition[J]. Functional Ecology, 2021, 35(11): 2562-2574. doi: 10.1111/1365-2435.13911
[14] ANGST G, POKORNY J, MUELLER C W, et al. Soil texture affects the coupling of litter decomposition and soil organic matter formation[J]. Soil Biology and Biochemistry, 2021, 159(1): 108302.
[15] 周庭宇, 肖 洋, 黄庆阳, 等. 森林凋落物分解的研究进展与展望[J]. 中国农学通报, 2022, 38(33):44-51.
[16] 邓承佳, 袁 访, 卜通达, 等. 土壤动物对黔中地区喀斯特森林凋落物分解的影响[J]. 林业科学研究, 2022, 35(3):72-81.
[17] 董学德, 高 鹏, 李 腾, 等. 土壤微生物群落对麻栎-刺槐混交林凋落物分解的影响[J]. 生态学报, 2021, 41(6):2315-2325.
[18] 单 军, 季 荣. 土食性大型土壤动物转化土壤有机碳的14C示踪法应用研究进展[J]. 土壤, 2008, 40(6):863-871.
[19] HUANG W, GONZÁLEZ G, ZOU X. Earthworm abundance and functional group diversity regulate plant litter decay and soil organic carbon level: A global meta-analysis[J]. Applied Soil Ecology, 2020, 150: 103473. doi: 10.1016/j.apsoil.2019.103473
[20] 李发东, 栗照鑫, 乔云峰, 等. 土壤有机碳同位素组成在农田生态系统碳循环中的应用进展[J]. 中国生态农业学报(中英文), 2023, 31(2):194-205.
[21] BAHN M, LATTANZI F A, HASIBEDER R, et al. Responses of belowground carbon allocation dynamics to extended shading in mountain grassland[J]. New Phytologist, 2013, 198(1): 116-126. doi: 10.1111/nph.12138
[22] ZHANG W X, HENDRIX P F, DAME L E, et al. Earthworms facilitate carbon sequestration through unequal amplification of carbon stabilization compared with mineralization[J]. Nature Communications, 2013, 4(10): 2576.
[23] SIX J, CALLEWAERT P, LENDERS S, et al. Measuring and understanding carbon storage in afforested soils by physical fractionation[J]. Soil Science Society of America Journal, 2002, 66(6): 1981-1987. doi: 10.2136/sssaj2002.1981
[24] 康玉娟, 武海涛. 蚯蚓对土壤碳氮循环关键过程的影响及其机制研究进展[J]. 土壤与作物, 2021, 10(2):150-162.
[25] COQ S, BARTHES B G, OLIVER R, et al. Earthworm activity affects soil aggregation and organic matter dynamics according to the quality and localization of crop residues - An experimental study (Madagascar)[J]. Soil Biology and Biochemistry, 2007, 39(8): 2119-2128. doi: 10.1016/j.soilbio.2007.03.019
[26] ZHENG Y, WANG S, BONKOWSKI M, et al. Litter chemistry influences earthworm effects on soil carbon loss and microbial carbon acquisition[J]. Soil Biology and Biochemistry, 2018, 123: 105-114. doi: 10.1016/j.soilbio.2018.05.012
[27] 于建光, 胡 锋, 李辉信, 等. 接种蚯蚓对土壤团聚体分布、稳定性及有机碳赋存的影响[J]. 水土保持学报, 2010, 24(3):175-179 + 184.
[28] ZHU X Y, HU Y C, WANG W, et al. Earthworms promote the accumulation of maize root-derived carbon in a black soil of Northeast China, especially in soil from long-term no-till[J]. Geoderma, 2019, 340: 124-132. doi: 10.1016/j.geoderma.2019.01.003
[29] HOANG D T T, BAUKE S L, KUZYAKOV Y, et al. Rolling in the deep: Priming effects in earthworm biopores in topsoil and subsoil[J]. Soil Biology and Biochemistry, 2017, 114: 59-71. doi: 10.1016/j.soilbio.2017.06.021
[30] FERLIAN O, EISENHAUER N, AGUIRREBENGOA M, et al. Invasive earthworms erode soil biodiversity: A meta-analysis[J]. Journal of Animal Ecology, 2018, 87(1): 162-172. doi: 10.1111/1365-2656.12746
[31] LUBBERS I M, VAN GROENIGEN K J, FONTE S J, et al. Greenhouse-gas emissions from soils increased by earthworms[J]. Nature Climate Change, 2013, 3(3): 187-194. doi: 10.1038/nclimate1692
[32] 徐 璇, 王维枫, 阮宏华. 土壤动物对森林凋落物分解的影响: 机制和模拟[J]. 生态学杂志, 2019, 38(9):2858-2865.
[33] SIX J, PAUSTAIN K, ELLIOT E T, et al. Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate-associated carbon[J]. Soil Science Society of America Journal, 2000, 64(2): 681-689. doi: 10.2136/sssaj2000.642681x
[34] 慈 恩, 杨林章, 马 力, 等. 长期耕作水稻土的有机碳分布和稳定碳同位素特征[J]. 水土保持学报, 2007, 21(5):72-75 + 179.
[35] 李涵诗, 毛艳玲, 邹双全. δ13C标记林木残体碳在土壤团聚体中的分布[J]. 土壤学报, 2017, 54(4):1038-1046.
[36] 吕元春, 薛丽佳, 尹云锋, 等. 外源新碳在不同类型土壤团聚体中的分配规律[J]. 土壤学报, 2013, 50(3):534-539.
[37] BOSSUYT H, SIX J, HENDRIX P F. Interactive effects of functionally different earthworm species on aggregation and incorporation and decomposition of newly added residue carbon[J]. Geoderma, 2006, 130(1-2): 14-25. doi: 10.1016/j.geoderma.2005.01.005
[38] WU J T, LI H Q, ZHANG W X, et al. Contrasting impacts of two subtropical earthworm species on leaf litter carbon sequestration into soil aggregates[J]. Journal of Soils and Sediments, 2017, 17(6): 1672-1681. doi: 10.1007/s11368-017-1657-9
[39] BOSSUYT H, SIX J, HENDRIX P F. Protection of soil carbon by microaggregates within earthworm casts[J]. Soil Biology and Biochemistry, 2005, 37(2): 251-258. doi: 10.1016/j.soilbio.2004.07.035
[40] YAVITT J B, FAHEY T J, SHERMAN R E, et al. Lumbricid earthworm effects on incorporation of root and leaf litter into aggregates in a forest soil, New York state[J]. Biogeochemistry, 2015, 125(2): 261-273. doi: 10.1007/s10533-015-0126-z