[1] JACTEL H, BAUHUS J, BOBERG J, et al. Tree diversity drives forest stand resistance to natural disturbances[J]. Current Forestry Reports, 2017, 3(3): 223-243. doi: 10.1007/s40725-017-0064-1
[2] ENGBERSEN N, STEFAN L, BROOKER R W, et al. Using plant traits to understand the contribution of biodiversity effects to annual crop community productivity[J]. Ecological Applications, 2022, 32(1): 1-11.
[3] LOREAU M, HECTOR A. Partitioning selection and complementarity in biodiversity experiments[J]. Nature, 2001, 412(7): 72-76.
[4] CARDINALE B J, WRIGHT J P, CADOTTE M W, et al. Impacts of plant diversity on biomass production increase through time because of species complementarity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(46): 18123-18128.
[5] HRIVNÁK R, BOŠEĽA M, SLEZÁK M, et al. Competition for soil resources forces a trade-off between enhancing tree productivity and understory species richness in managed beech forests[J]. Science of the Total Environment, 2022, 849(8): 1-8.
[6] MCCORMACK M L, DICKIE I A, EISSENSTAT D M, et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes[J]. New Phytologist, 2015, 207(3): 505-518. doi: 10.1111/nph.13363
[7] ZHU X, ZHANG Z, WANG Q, et al. More soil organic carbon is sequestered through the mycelium pathway than through the root pathway under nitrogen enrichment in an alpine forest[J]. Global Change Biology, 2022, 28(16): 4947-4961. doi: 10.1111/gcb.16263
[8] SMITH S E, READ D J. Mycorrhizal symbiosis(3rd Edn)[M]. New York: Academic Press, 2008.
[9] TAYLOR T N, REMY W, HASS H, et al. Fossil arbuscular mycorrhizae from the early devonian[J]. Mycologia, 1995, 87(4): 560-573. doi: 10.1080/00275514.1995.12026569
[10] COMAS L H, MUELLER K E, TAYLOR L L, et al. Evolutionary patterns and biogeochemical significance of angiosperm root traits[J]. International Journal of Plant Sciences, 2012, 173(6): 584-595. doi: 10.1086/665823
[11] KONG D, MA C, ZHANG Q, et al. Leading dimensions in absorptive root trait variation across 96 subtropical forest species[J]. The New Phytologist, 2014, 203(3): 863-872. doi: 10.1111/nph.12842
[12] PENG S, CHEN H Y H. Global responses of fine root biomass and traits to plant species mixtures in terrestrial ecosystems[J]. Global Ecology and Biogeography, 2021, 30(1): 289-304. doi: 10.1111/geb.13205
[13] DIETRICH P, CESARZ S, LIU T, et al. Effects of plant species diversity on nematode community composition and diversity in a long-term biodiversity experiment[J]. Oecologia, 2021, 197(2): 297-311. doi: 10.1007/s00442-021-04956-1
[14] OSTONEN I, LÕHMUS K, HELMISAARI H, et al. Fine root morphological adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests[J]. Tree Physiol, 2007, 27(11): 1627-1634. doi: 10.1093/treephys/27.11.1627
[15] GOULD I J, QUINTON J N, WEIGELT A, et al. Plant diversity and root traits benefit physical properties key to soil function in grasslands[J]. Ecology Letters, 2016, 19(9): 1140-1149. doi: 10.1111/ele.12652
[16] SALAHUDDIN S, REWALD B, RAZAQ M, et al. Root order-based traits of Manchurian walnut & larch and their plasticity under interspecific competition[J]. Scientific Reports, 2018, 8(1): 1-14.
[17] BRUELHEIDE H, BÖHNKE M, BOTH S, et al. Community assembly during secondary forest succession in a Chinese subtropical forest[J]. Ecological Monographs, 2011, 81(1): 25-41. doi: 10.1890/09-2172.1
[18] SUN Z, LIU X, SCHMID B, et al. Positive effects of tree species richness on fine-root production in a subtropical forest in SE-China[J]. Journal of Plant Ecology, 2017, 10(1): 146-157. doi: 10.1093/jpe/rtw094
[19] BONGERS F J, SCHMID B, BRUELHEIDE H, et al. Functional diversity effects on productivity increase with age in a forest biodiversity experiment[J]. Nature Ecology & Evolution, 2021, 5(12): 1594-1603.
[20] SOUDZILOVSKAIA N A, VAESSEN S, BARCELO M, et al. Fungal root: global online database of plant mycorrhizal associations[J]. New Phytologist, 2020, 227(3): 955-966. doi: 10.1111/nph.16569
[21] GUO D L, XIA M X, WEI X, et al. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species[J]. New Phytologist, 2008, 180(3): 673-683. doi: 10.1111/j.1469-8137.2008.02573.x
[22] PREGITZER K S, DEFOREST J L, BURTON A J, et al. Fine root architecture of nine North American trees[J]. Ecological Monographs, 2002, 72(2): 293-309. doi: 10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2
[23] MCGONIGLE T P, FITTER A H. Ecological specificity of vesicular-arbuscular mycorrhizal associations[J]. Mycological Research, 1990, 94(1): 120-122. doi: 10.1016/S0953-7562(09)81272-0
[24] LIU B. , LI H, ZHU B, et al. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species[J]. New Phytologist, 2015, 208(1): 125-136. doi: 10.1111/nph.13434
[25] KOU L, GUO D, YANG H, et al. Growth, morphological traits and mycorrhizal colonization of fine roots respond differently to nitrogen addition in a slash pine plantation in subtropical China[J]. Plant and Soil, 2015, 391(1-2): 207-218. doi: 10.1007/s11104-015-2420-x
[26] WAMBSGANSS J, FRESCHET G T, BEYER F, et al. Tree species mixing causes a shift in fine-root soil exploitation strategies across European forests[J]. Functional Ecology, 2021, 35(9): 1886-1902. doi: 10.1111/1365-2435.13856
[27] COMAS L H, CALLAHAN H S, MIDFORD P E. Patterns in root traits of woody species hosting arbuscular and ectomycorrhizas: Implications for the evolution of belowground strategies[J]. Ecology and Evolution, 2014, 4(15): 2979-2990. doi: 10.1002/ece3.1147
[28] CHEN W, KOIDE R T, ADAMS T S, et al. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(31): 8741-8746.
[29] 欧阳园丽, 张参参, 林小凡, 等. 中国亚热带不同菌根树种的根叶形态学性状特征与生长差异: 以江西新岗山为例[J]. 生物多样性, 2021, 29(6):746-758.
[30] CHEN N, ZHANG Y J, ZHU J T, et al. Nonlinear responses of productivity and diversity of alpine meadow communities to degradation[J]. Chinese Journal of Plant Ecology, 2018, 42(1): 50-65. doi: 10.17521/cjpe.2017.0252
[31] EISSENSTAT D M, KUCHARSKI J M, ZADWORNY M, et al. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest[J]. New Phytologist, 2015, 208(1): 114-124. doi: 10.1111/nph.13451
[32] BERGMANN J, WEIGELT A, PLAS F, et al. The fungal collaboration gradient dominates the root economics space in plants[J]. Science Advances., 2020, 6(27): 1-9.
[33] POORTER H, NIKLAS K J, REICH P B, et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control[J]. New Phytologist, 2012, 193(1): 30-50. doi: 10.1111/j.1469-8137.2011.03952.x
[34] ARCHAMBAULT L S, TRZILOVA D, GONIA S, et al. Intravital imaging reveals divergent cytokine and cellular immune responses to Candida albicans and Candida parapsilosis[J]. Microbiology, 2019, 10(3): 1-18.
[35] WAMBSGANSS J, BEYER F, FRESCHET G T, et al. Tree species mixing reduces biomass but increases length of absorptive fine roots in European forests[J]. Journal of Ecology, 2021, 109(7): 2678-2691. doi: 10.1111/1365-2745.13675
[36] AKATSUKI M, MAKITA N. Influence of fine root traits on in situ exudation rates in four conifers from different mycorrhizal associations[J]. Tree Physiology, 2020, 40(8): 1071-1079. doi: 10.1093/treephys/tpaa051
[37] TEDERSOO L, BAHRAM M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes[J]. Biological Reviews of the Cambridge Philosophical Society, 2019, 94(5): 1857-1880. doi: 10.1111/brv.12538
[38] MIDGLEY M G, BRZOSTEK E, PHILLIPS R P. Decay rates of leaf litters from arbuscular mycorrhizal trees are more sensitive to soil effects than litters from ectomycorrhizal trees[J]. The Journal of Ecology, 2015, 103(6): 1454-1463. doi: 10.1111/1365-2745.12467
[39] AYUSO-FERNÁNDEZ I, RUIZ-DUEÑAS F J, MARTÍNEZ A T. Evolutionary convergence in lignin-degrading enzymes[J]. Proceedings of the National Academy of Sciences, 2018, 115(25): 6428-6433. doi: 10.1073/pnas.1802555115
[40] SILVIA P, STEFANIA D, ELENA M. Ericoid mycorrhizal fungi and their genomes: another side to the mycorrhizal symbiosis?[J]. New Phytologist, 2018, 220(4): 1141-1147. doi: 10.1111/nph.15218
[41] CLEVELAND C C, HOULTON B Z, SMITH W K, et al. Patterns of new versus recycled primary production in the terrestrial biosphere[J]. Proceedings of the National Academy of Sciences, 2013, 110(31): 12733-12737. doi: 10.1073/pnas.1302768110