[1] BROWSE J. Jasmonate passes muster: A receptor and targets for the defense hormone[J]. Annual Review of Plant Biology, 2009, 60(1): 183-205. doi: 10.1146/annurev.arplant.043008.092007
[2] ACOSTA I F, FARMER E E. Jasmonates[J]. The Arabidopsis Book, 2010, 8: e0129. doi: 10.1199/tab.0129
[3] CHINI A, BOTER M, SOLANO R. Plant oxylipins: COI1/JAZs/MYC2 as the core jasmonic acid-signalling module[J]. The FEBS Journal, 2009, 276(17): 4682-4692. doi: 10.1111/j.1742-4658.2009.07194.x
[4] SONG C, CAO Y P, DAI J, et al. The Multifaceted Roles of MYC2 in plants: toward transcriptional reprogramming and stress tolerance by jasmonate signaling[J]. Frontiers in Plant Science, 2022, 13: 868874. doi: 10.3389/fpls.2022.868874
[5] 李 罡, 李文龙, 许雪梅, 等. MYC2转录因子参与植物发育调控的研究进展[J]. 植物生理学报, 2019, 55(2):125-132. doi: 10.13592/j.cnki.ppj.2018.0479
[6] PIRES N, DOLAN L. Origin and diversification of basic-helix-loop-helix proteins in plants[J]. Molecular Biology Evolution, 2010, 27(4): 862-874. doi: 10.1093/molbev/msp288
[7] LORENZO O, CHICO J M, SANCHEZ-SERRANO J J, et al. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis[J]. The Plant Cell, 2004, 16(7): 1938-1950. doi: 10.1105/tpc.022319
[8] DOMBRECHT B, XUE G P, SPRAGUE S J, et al. MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis[J]. The Plant Cell, 2007, 19(7): 2225-2245. doi: 10.1105/tpc.106.048017
[9] CHEN Q, SUN J, ZHAI Q, et al. The basic helix-loop-helix transcription factor MYC2 directly represses PLETHORA expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis[J]. The Plant Cell, 2011, 23(9): 3335-3352. doi: 10.1105/tpc.111.089870
[10] ZHANG Q, XIE Z, ZHANG R, et al. Blue light regulates secondary cell wall thickening via MYC2/MYC4 activation of the NST1-directed transcriptional network in Arabidopsis[J]. The Plant Cell, 2018, 30(10): 2512-2528. doi: 10.1105/tpc.18.00315
[11] LUO F, ZHANG Q, XIN H, et al. A Phytochrome B-PIF4-MYC2/MYC4 module inhibits secondary cell wall thickening in response to shaded light[J]. Plant Communications, 2022, 3(6): 100416. doi: 10.1016/j.xplc.2022.100416
[12] WANG H P, LI Y, PAN J J, et al. The bHLH transcription factors MYC2, MYC3, and MYC4 are required for jasmonate-mediated inhibition of flowering in Arabidopsis[J]. Molecular Plant, 2017, 10(11): 1461-1464. doi: 10.1016/j.molp.2017.08.007
[13] QI T, HUANG H, SONG S, et al. Regulation of jasmonate-mediated stamen development and seed production by a bHLH-MYB complex in Arabidopsis[J]. The Plant Cell, 2015, 27(6): 1620-1633. doi: 10.1105/tpc.15.00116
[14] SONG S, HUANG H, GAO H, et al. Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis[J]. The Plant Cell, 2014, 26(1): 263-279. doi: 10.1105/tpc.113.120394
[15] LI T, XU Y, ZHANG L, et al. The jasmonate activated transcription factor MdMYC2 regulates ETHYLENE RESPONSE FACTOR and ethylene biosynthetic genes to promote ethylene biosynthesis during apple fruit ripening[J]. The Plant Cell, 2017, 29(6): 1316-1334. doi: 10.1105/tpc.17.00349
[16] DOB A, LAKEHAL A, NOVAK O, et al. Jasmonate inhibits adventitious root initiation through repression of CKX1 and activation of RAP2.6L transcription factor in Arabidopsis[J]. Journal of Experimental Botany, 2021, 72(20): 7107-7118. doi: 10.1093/jxb/erab358
[17] KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular evolutionary genetics analysis Version 7.0 for bigger datasets[J]. Molecular Biology Evolution, 2016, 33(7): 1870-1874. doi: 10.1093/molbev/msw054
[18] JANSSON S, DOUGLAS C J. Populus: A Model System for Plant Biology[J]. Annual Review of Plant Biology, 2007, 58: 435-458. doi: 10.1146/annurev.arplant.58.032806.103956
[19] SUN J, XU Y, YE S, et al. Arabidopsis ASA1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation[J]. The Plant Cell, 2009, 21(5): 1495-1511. doi: 10.1105/tpc.108.064303
[20] HUANG C F, YU C P, WU Y H, et al. Elevated auxin biosynthesis and transport underlie high vein density in C4 leaves[J]. Proceedings National Academy of Sciences of USA, 2017, 114(33): E6884-E6891.
[21] QI T, WANG J, HUANG H, et al. Regulation of jasmonate-induced leaf senescence by antagonism between bHLH subgroup IIIe and IIId factors in Arabidopsis[J]. The Plant Cell, 2015, 27(6): 1634-1649. doi: 10.1105/tpc.15.00110
[22] ZHUO M N, SAKURABA Y, YANAGISAWA S. A jasmonate-activated MYC2–Dof2.1–MYC2 transcriptional loop promotes leaf senescence in Arabidopsis[J]. The Plant Cell, 2020, 32(1): 242-262. doi: 10.1105/tpc.19.00297
[23] KAZAN K, MANNERS J M. The interplay between light and jasmonate signalling during defence and development[J]. Journal of Experimental Botany, 2011, 62(12): 4087-4100. doi: 10.1093/jxb/err142
[24] LI Y, YANG X, LI X. Role of jasmonate signaling pathway in resistance to dehydration stress in Arabidopsis[J]. Acta Physiologiae Plantarum, 2019, 41(6): 1-12. doi: 10.1007/s11738-019-2897-7
[25] AGRAWAL R, SHARMA M, DWIVEDI N, et al. MEDIATOR SUBUNIT17 integrates jasmonate and auxin signaling pathways to regulate thermomorphogenesis[J]. Plant Physiology, 2022, 189(4): 2259-2280. doi: 10.1093/plphys/kiac220
[26] WANG Y, XU H, LIU W, et al. Methyl jasmonate enhances apple’ cold tolerance through the JAZ-MYC2 pathway[J]. The Plant Cell, 2019, 136(1): 75-84.
[27] DING F, WANG C, XU N, et al. The ethylene response factor SlERF. B8 triggers jasmonate biosynthesis to promote cold tolerance in tomato[J]. Environmental and Experimental Botany, 2022, 203: 105073. doi: 10.1016/j.envexpbot.2022.105073