[1] 中国科学院中国植物志编辑委员会. 中国植物志[M]. 北京: 科学出版社, 2004.
[2] 王良民. 卫矛属一新变种—腥臭卫矛[J]. 西北植物学报, 2013, 33(4):840-842.
[3] Yan Z H, Han Z Z, Hu X Q, et al. Chemical constituents of Euonymus alatus[J]. Chemistry of Natural Compounds, 2013, 49(2): 340-342. doi: 10.1007/s10600-013-0598-9
[4] 闫朝辉. 卫矛化学成分研究[D]. 上海: 第二军医大学, 2012.
[5] Yan L H, Liu X Q, Zhu H, et al. Chemical constituents of Euonymus fortunei[J]. Journal of Asian Natural Products Research, 2015, 17(9): 952-958. doi: 10.1080/10286020.2015.1030401
[6] Bae J Y, Park W S, Kim H J, et al. Chemical and morphological differentiation between Euonymus japonica and E. fortunei var. radicans[J]. Planta Medica, 2014, 80(10): 841-846.
[7] 朱 辉, 闫利华, 王智民, 等. 卫矛属药用植物化学成分及药理活性研究进展[J]. 中国药学杂志, 2013, 48(4):241-247.
[8] Zhu J X, Qin J J, Zhang F, et al. Chemical constituents of Euonymus acanthocarpus[J]. Chemistry of Natural Compounds, 2013, 49(2): 383-387. doi: 10.1007/s10600-013-0616-y
[9] 佳 娴. 刺果卫矛化学成分研究[D]. 上海: 上海交通大学, 2012.
[10] 王盈盈, 刘寿柏, 王 昊, 等. 疏花卫矛化学成分的研究[J]. 热带亚热带植物学报, 2012, 20(6):596-601.
[11] 朱小迪, 李永慈, 王建忠, 等. 黄心卫矛化学成分的分离与鉴定[J]. 中成药, 2011, 33(1):107-110.
[12] He S L, Zhang Y M, Ma Y H, et al. Chemical composition and insecticidal activities of the essential oil from fruits of Euonymus schensianus[J]. Chemistry of Natural Compounds, 2019, 55(4): 748-750. doi: 10.1007/s10600-019-02799-0
[13] 张 蕾, 倪 穗, 李纪元, 等. 金花茶不同时期花瓣营养与生物活性成分分析[J]. 林业科学研究, 2019, 32(2):32-38.
[14] Liu J, Liu Y, Wang Y, et al. GC-MS metabolomic analysis to reveal the metabolites and biological pathways involved in the developmental stages and tissue response of Panax ginseng[J]. Molecules, 2017, 22(3): 496-509. doi: 10.3390/molecules22030496
[15] 徐 萌, 张经纬, 吴令上, 等. HS-SPME-GC-MS联用测定蜡梅属植物花的挥发性成分[J]. 林业科学, 2016, 52(12):58-65.
[16] Wang L M, Li M T, Jin W W, et al. Variations in the components of Osmanthus fragrans Lour. essential oil at different stages of flowering[J]. Food Chemistry, 2009, 114(1): 233-236. doi: 10.1016/j.foodchem.2008.09.044
[17] 万友名, 马 宏, 刘雄芳, 等. 馥郁滇丁香‘香妃’成花过程的主要内源物质变化特点[J]. 林业科学研究, 2019, 32(6):144-150.
[18] Odeh I, Abu-Lafi S, Al-Najjar I. Determination of unifloral honey volatiles from Centaurea iberica and Zizyphus spinachristi by solid-phase microextraction and gas chromatography-mass spectrometry[J]. Acta Chromatographica, 2014, 26(3): 485-493. doi: 10.1556/AChrom.26.2014.3.7
[19] Shoko T, Saka J D K, Apostolides Z. Headspace volatiles of the edible fruit pulp of Parinari curatellifolia growing in Malawi using solid phase microextraction[J]. South African Journal of Botany, 2014, 90: 128-130. doi: 10.1016/j.sajb.2013.11.001
[20] Uekane T M, Nicolotti L, Griglione A, et al. Studies on the volatile fraction composition of three native Amazonian-Brazilian fruits: Murici (Byrsonima crassifolia L., Malpighiaceae), bacuri (Platonia insignis M., Clusiaceae), and sapodilla (Manilkara sapota L., Sapotaceae)[J]. Food Chemistry, 2017, 219: 13-22. doi: 10.1016/j.foodchem.2016.09.098
[21] Jerkovic I, Prdun S, Marijanovic Z, et al. Traceability of satsuma mandarin (Citrus unshiu Marc.) honey through nectar/honey-sac/honey pathways of the headspace, volatiles, and semi-volatiles: chemical markers[J]. Molecules, 2016, 21(10): 1302-1314. doi: 10.3390/molecules21101302
[22] Adams R P. Identification of essential oil components by Gas Chromatography/Mass Spectrometry[M]. Carol Stream, IL: Allured Publishing Corporation, 2017.
[23] 2-莰醇安全技术说明书[DB/OL]. http://www.msdssafe.com/msds_show.php?msds_id=1731#xiazai, 2020-02-06.
[24] 杨 敏, 贺与平, 殷勤红, 等. 云南不同产地玛咖挥发油成分的GC-MS检测及多元统计分析[J]. 食品工业科技, 2016, 37(14):67-72.
[25] Kuwahara Y, Asano Y. Generation of (2-nitroethyl) benzene and related benzenoids from L-phenylalanine; flower scents of the Japanese loquat Eriobotrya japonica [Rosales: Rosaceae][J]. Bioscience Biotechnology and Biochemistry, 2018, 82(11): 1855-1866. doi: 10.1080/09168451.2018.1498319
[26] Konarska A. Comparison of the structure of floral nectaries in two Euonymus L. species (Celastraceae)[J]. Protoplasma, 2015, 252(3): 901-910. doi: 10.1007/s00709-014-0729-6
[27] Noge K, Tamogami, S. Herbivore-induced phenylacetonitrile is biosynthesized from de novo-synthesized L-phenylalanine in the giant knotweed, Fallopia sachalinensis[J]. Febs Letters, 2013, 587(12): 1811-1817. doi: 10.1016/j.febslet.2013.04.038
[28] Judd G J R, Knight A L, El-Sayed A M. Trapping Pandemis limitata (Lepidoptera: Tortricidae) moths with mixtures of acetic acid, caterpillar-induced apple-leaf volatiles, and sex pheromone[J]. Canadian Entomologist, 2017, 149(6): 813-822. doi: 10.4039/tce.2017.38
[29] Yamaguchi T, Noge K, Asano Y. Cytochrome P450 CYP71AT96 catalyses the final step of herbivore-induced phenylacetonitrile biosynthesis in the giant knotweed, Fallopia sachalinensis[J]. Plant Molecular Biology, 2016, 91(3): 229-239. doi: 10.1007/s11103-016-0459-6