[1] Grassi G, House J, Dentener F,et al. The key role of forests in meeting climate targets requires science for credible mitigation[J]. Nature Climate Change, 2017, 7(3): 220-226. doi: 10.1038/nclimate3227
[2] Rozendaal D M A, Chazdon R L, Arreola-Villa F,et al. Demographic drivers of aboveground biomass dynamics during secondary succession in neotropical dry and wet forests[J]. Ecosystems, 2017, 20: 340-353. doi: 10.1007/s10021-016-0029-4
[3] Purves D W. The demography of range boundaries versus range cores in eastern US tree species[J]. Proceedings of the Royal Society B:Biological Sciences, 2009, 276(1661): 1477-1484. doi: 10.1098/rspb.2008.1241
[4] Balvanera P, Pfisterer A B, Buchmann N,et al. Quantifying the evidence for biodiversity effects on ecosystem functioning and services[J]. Ecology Letters, 2006, 9(10): 1146-1156. doi: 10.1111/j.1461-0248.2006.00963.x
[5] Taylor A R, Gao B, Chen H Y H. The effect of species diversity on tree growth varies during forest succession in the boreal forest of central Canada[J]. Forest Ecology and Management, 2020, 455: 117641. doi: 10.1016/j.foreco.2019.117641
[6] Anderson R C, Loucks O L, Swain A M. Herbaceous response to canopy cover, light intensity, and throughfall precipitation in coniferous forests[J]. Ecology, 1969, 50(2): 255-263. doi: 10.2307/1934853
[7] Forrester D I. Linking forest growth with stand structure: Tree size inequality, tree growth or resource partitioning and the asymmetry of competition[J]. Forest Ecology and Management, 2019, 447: 139-157. doi: 10.1016/j.foreco.2019.05.053
[8] Mathys A S, Brang P, Stillhard J,et al. Long-term tree species population dynamics in Swiss forest reserves influenced by forest structure and climate[J]. Forest Ecology and Management, 2021, 481: 118666. doi: 10.1016/j.foreco.2020.118666
[9] Allen C D, Macalady A K, Chenchouni H,et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J]. Forest Ecology and Management, 2010, 259(4): 660-684. doi: 10.1016/j.foreco.2009.09.001
[10] 闫 明, 刘青青, 刘志萍, 等. 干旱和林分因子对树木死亡的影响——以美国德克萨斯州东部国家森林为例[J]. 应用生态学报, 2022, 33(11):2897-2906.
[11] 罗 旭, 王聿丽, 张金荃. 气候变化和林火干扰对大兴安岭林区地上生物量影响的动态模拟[J]. 应用生态学报, 2018, 29(3):713-724.
[12] Hernández Gordillo A L, Vilchez Mendoza S, Ngo Bieng M A,et al. Altitude and community traits explain rain forest stand dynamics over a 2 370 m altitudinal gradient in Costa Rica[J]. Ecosphere, 2021, 12(12): e03867.
[13] 张恰咛, 朱清科, 任正龑, 等. 地形对陕北黄土区衰退沙棘人工林天然更新的影响[J]. 林业科学研究, 2017, 30(2):300-306.
[14] Peña M A, Feeley K J, Duque A. Effects of endogenous and exogenous processes on aboveground biomass stocks and dynamics in Andean forests[J]. Plant Ecology, 2018, 219: 1481-1492. doi: 10.1007/s11258-018-0895-2
[15] Bréda N, Granier A, Aussenac G. Effects of thinning on soil and tree water relations, transpiration and growth in an oak forest (Quercus petraea (Matt. ) Liebl. )[J]. Tree Physiology, 1995, 15(5): 295-306. doi: 10.1093/treephys/15.5.295
[16] Marková I, Pokorný R, Marek M V. Transformation of solar radiation in Norway spruce standsinto produced biomass-the effect of stand density[J]. Journal of Forest Science, 2011, 57(6): 233-241. doi: 10.17221/46/2010-JFS
[17] Lohbeck M, Poorter L, Martínez-Ramos M,et al. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession[J]. Ecology, 2015, 96(5): 1242-1252. doi: 10.1890/14-0472.1
[18] 于水今, 王 娟, 张春雨, 等. 温带针阔混交林生物量稳定性影响机制[J]. 植物生态学报, 2022, 46(6):632-641.
[19] White L, O’Connor N E, Yang Q,et al. Individual species provide multifaceted contributions to the stability of ecosystems[J]. Nature Ecology & Evolution, 2020, 4(12): 1594-1601.
[20] Astigarraga J, Andivia E, Zavala M A,et al. Evidence of non‐stationary relationships between climate and forest responses: Increased sensitivity to climate change in Iberian forests[J]. Global Change Biology, 2020, 26(9): 5063-5076. doi: 10.1111/gcb.15198
[21] Poorter L, van der Sande M T, Arets E J M M,et al. Biodiversity and climate determine the functioning of Neotropical forests[J]. Global Ecology and Biogeography, 2017, 26(12): 1423-1434. doi: 10.1111/geb.12668
[22] 陈传国, 朱俊凤. 东北主要林木生物量手册[M].北京: 中国林业出版社, 1989
[23] Wang C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Forest Ecology and Management, 2006, 222(1-3): 9-16. doi: 10.1016/j.foreco.2005.10.074
[24] Wang T, Hamann A, Spittlehouse D L,et al. Climate WNA—high-resolution spatial climate data for western North America[J]. Journal of Applied Meteorology and Climatology, 2012, 51(1): 16-29. doi: 10.1175/JAMC-D-11-043.1
[25] Oksanen J, Blanchet F G, Kindt R,et al. Vegan: community ecology package. R package vegan, vers. 2.2-1[J]. Worl Agro Cent, 2015, 3: 7-81.
[26] 王酉石, 储诚进. 结构方程模型及其在生态学中的应用[J]. 植物生态学报, 2011, 35(3):337-344.
[27] 石亚飞, 石善恒, 黄晓敏. 基于R的结构方程模型在生态学中的应用[J]. 生态学杂志, 2022, 41(5):1015-1023.
[28] Howard, A. L. Handbook of Structural Equation Modeling[J]. Struct. Equ. Model. A Multidiscip., 2013, 20: 354-360. doi: 10.1080/10705511.2013.769397
[29] Liang J, Buongiorno J, Monserud R A,et al. Effects of diversity of tree species and size on forest basal area growth, recruitment, and mortality[J]. Forest Ecology and Management, 2007, 243(1): 116-127. doi: 10.1016/j.foreco.2007.02.028
[30] Tetemke B A, Birhane E, Rannestad M M,et al. Species diversity and stand structural diversity of woody plants predominantly determine aboveground carbon stock of a dry Afromontane forest in Northern Ethiopia[J]. Forest Ecology and Management, 2021, 500: 119634. doi: 10.1016/j.foreco.2021.119634
[31] Bordin K M, Müller S C. Drivers of subtropical forest dynamics: The role of functional traits, forest structure and soil variables[J]. Journal of Vegetation Science, 2019, 30(6): 1164-1174. doi: 10.1111/jvs.12811
[32] Ruiz-Benito P, Madrigal-Gonzalez J, Ratcliffe S,et al. Stand structure and recent climate change constrain stand basal area change in European forests: a comparison across boreal, temperate, and Mediterranean biomes[J]. Ecosystems, 2014, 17: 1439-1454. doi: 10.1007/s10021-014-9806-0
[33] Rohner B, Bigler C, Wunder J,et al. Fifty years of natural succession in Swiss forest reserves: changes in stand structure and mortality rates of oak and beech[J]. Journal of Vegetation Science, 2012, 23(5): 892-905. doi: 10.1111/j.1654-1103.2012.01408.x
[34] Stephenson N L, Das A J, Condit R,et al. Rate of tree carbon accumulation increases continuously with tree size[J]. Nature, 2014, 507(7490): 90-93. doi: 10.1038/nature12914
[35] Poorter L, van der Sande M T, Thompson J,et al. Diversity enhances carbon storage in tropical forests[J]. Global Ecology and Biogeography, 2015, 24(11): 1314-1328. doi: 10.1111/geb.12364
[36] Gworek J R, Vander Wall S B, Brussard P F. Changes in biotic interactions and climate determine recruitment of Jeffrey pine along an elevation gradient[J]. Forest Ecology and Management, 2007, 239(1-3): 57-68. doi: 10.1016/j.foreco.2006.11.010
[37] Condés S, del Río M, Forrester D I,et al. Temperature effect on size distributions in spruce-fir-beech mixed stands across Europe[J]. Forest Ecology and Management, 2022, 504: 119819. doi: 10.1016/j.foreco.2021.119819
[38] Dusenge M E, Duarte A G, Way D A. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration[J]. New Phytologist, 2019, 221(1): 32-49. doi: 10.1111/nph.15283
[39] Käber Y, Meyer P, Stillhard J,et al. Tree recruitment is determined by stand structure and shade tolerance with uncertain role of climate and water relations[J]. Ecology and Evolution, 2021, 11(17): 12182-12203. doi: 10.1002/ece3.7984
[40] Milbau A, Vandeplas N, Kockelbergh F,et al. Both seed germination and seedling mortality increase with experimental warming and fertilization in a subarctic tundra[J]. AoB Plants, 2017, 9(5): plx040.
[41] Canham C D, Murphy L. The demography of tree species response to climate: seedling recruitment and survival[J]. Ecosphere, 2016, 7(8): e01424.
[42] 姚丹丹, 余 黎, 雷相东, 等. 台风“布拉万”对东北近天然落叶松云冷杉试验林的影响[J]. 生态学报, 2015, 35(11):3674-3683.
[43] van der Sande M T, Peña‐Claros M, Ascarrunz N,et al. Abiotic and biotic drivers of biomass change in a Neotropical forest[J]. Journal of Ecology, 2017, 105(5): 1223-1234. doi: 10.1111/1365-2745.12756
[44] Johnson M O, Galbraith D, Gloor M,et al. Variation in stem mortality rates determines patterns of above‐ground biomass in A mazonian forests: implications for dynamic global vegetation models[J]. Global Change Biology, 2016, 22(12): 3996-4013. doi: 10.1111/gcb.13315