[1] Schimel D S, Braswell B H, Holland E A, et al. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils[J]. Global Biogeochemical Cycles, 1994, 8(3): 279-294. doi: 10.1029/94GB00993
[2] Montagnini F, Nair P. Carbon sequestration: An underexploited environmental benefit of agroforestry systems[J]. Agroforestry Systems, 2004, 61-62(1-3): 281. doi: 10.1023/B:AGFO.0000029005.92691.79
[3] Johnson D W, Curtis P S. Effects of forest management on soil C and N storage: meta analysis[J]. Forest Ecology & Management, 2001, 140(2-3): 227-238.
[4] Deb S, Bhadoria P, Mandal B, et al. Soil organic carbon: Towards better soil health, productivity and climate change mitigation[J]. Climate Change and Environmental Sustainability, 2015, 3(1): 26-34. doi: 10.5958/2320-642X.2015.00003.4
[5] 沈 宏, 曹志洪. 土壤活性有机碳的表征及其生态效应[J]. 生态学杂志, 1999, 18(3):32-38. doi: 10.3321/j.issn:1000-4890.1999.03.008
[6] Wang Q K, Wang S L, Feng Z W. Comparison of active soil organic carbon pool between Chinese fir plantations and evergreen broadleaved forests[J]. Journal of Beijing Forestry University, 2006, 28(5): 1-6.
[7] 张宇辰, 彭道黎. 间伐对塞罕坝华北落叶松人工林土壤活性有机碳的影响[J]. 应用与环境生物学报, 2020, 26(4):961-968.
[8] Romeo F, Settineri G, Sidari M, et al. Responses of soil quality indicators to innovative and traditional thinning in a beech (Fagus sylvatica L.) forest[J]. Forest Ecology and Management, 2020, 465: 118106.
[9] Lull C, Bautista I, A Lidón, et al. Temporal effects of thinning on soil organic carbon pools, basal respiration and enzyme activities in a Mediterranean Holm oak forest[J]. Forest Ecology and Management, 2020, 464: 118088.
[10] Gong C, Tan Q, Liu G, et al. Forest thinning increases soil carbon stocks in China[J]. Forest Ecology and Management, 2021, 482: 118812. doi: 10.1016/j.foreco.2020.118812
[11] Zhang X, Guan D, Li W, et al. The effects of forest thinning on soil carbon stocks and dynamics: A meta-analysis[J]. Forest Ecology and Management, 2018, 429: 36-43. doi: 10.1016/j.foreco.2018.06.027
[12] Kim S, Li G, Han S H, et al. Microbial biomass and enzymatic responses to temperate oak and larch forest thinning: Influential factors for the site-specific changes[J]. The Science of the Total Environment, 2019, 651: 2068-2079. doi: 10.1016/j.scitotenv.2018.10.153
[13] Ma J, Kang F, Cheng X, et al. Moderate thinning increases soil nitrogen in a Larix principis-rupprechtii (Pinaceae) plantations[J]. Geoderma, 2018, 329: 118-128. doi: 10.1016/j.geoderma.2018.05.021
[14] 胡 满, 曾思齐, 龙时胜. 青冈栎次生林主要树种空间分布格局及其关联性研究[J]. 中南林业科技大学学报, 2019, 39(6):66-71.
[15] 吴晓玲, 张世熔, 蒲玉琳, 等. 川西平原土壤微生物生物量碳氮磷含量特征及其影响因素分析[J]. 中国生态农业学报(中英文), 2019, 27(10):1607-1616.
[16] Garten C T, Post W M, Hanson P J, et al. Forest soil carbon inventories and dynamics along an elevation gradient in the southern Appalachian Mountains[J]. Biogeochemistry, 1999, 45(2): 115-145.
[17] Blair G, Lefroy R, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 1995, 46(7): 393-406.
[18] 窦艳星, 侯 琳, 马红红, 等. 间伐对松栎混交林土壤活性有机碳的影响[J]. 中南林业科技大学学报, 2015, 35(5):64-69.
[19] 张文雯, 韩海荣, 程小琴, 等. 间伐对华北落叶松人工林土壤活性有机碳含量及酶活性的影响[J]. 应用生态学报, 2019, 30(10):3347-3355.
[20] Baena C W, M Andrés-Abellán, Lucas-Borja M E, et al. Thinning and recovery effects on soil properties in two sites of a Mediterranean forest, in Cuenca Mountain (South-eastern of Spain)[J]. Forest Ecology & Management, 2013, 308: 223-230.
[21] 习 丹, 余泽平, 熊 勇, 等. 江西官山常绿阔叶林土壤有机碳组分沿海拔的变化[J]. 应用生态学报, 2020, 31(10):3349-3356.
[22] 翟凯燕, 马婷瑶, 金雪梅, 等. 间伐对马尾松人工林土壤活性有机碳的影响[J]. 生态学杂志, 2017, 36(3):609-615.
[23] Cheng X R, Yu M, Li Z. Short term effects of thinning on soil organic carbon fractions, soil properties, and forest floor in Cunninghamia lanceolata plantations[J]. Journal of Soil Science and Environmental Management, 2018, 9(2): 21-29. doi: 10.5897/JSSEM2017.0661
[24] Ares A, Neill A R, Puettmann K J. Understory abundance, species diversity and functional attribute response to thinning in coniferous stands[J]. Forest Ecology & Management, 2010, 260(7): 1104-1113.
[25] Jandl R, Lindner M, Vesterdal L, et al. How strongly can forest management influence soil carbon sequestration?[J]. Geoderma, 2007, 137(3-4): 253-268. doi: 10.1016/j.geoderma.2006.09.003
[26] 房 飞, 唐海萍, 李滨勇. 不同土地利用方式对土壤有机碳及其组分影响研究[J]. 生态环境学报, 2013, 22(11):1774-1779. doi: 10.3969/j.issn.1674-5906.2013.11.005
[27] 徐 侠, 王 丰, 栾以玲, 等. 武夷山不同海拔植被土壤易氧化碳[J]. 生态学杂志, 2008, 27(7):1115-1121.
[28] 袁 喆, 罗承德, 李贤伟, 等. 间伐强度对川西亚高山人工云杉林土壤易氧化碳及碳库管理指数的影响[J]. 水土保持学报, 2010, 24(6):127-131.
[29] 雷 蕾, 肖文发, 曾立雄, 等. 马尾松林土壤微生群落结构对不同营林处理的响应[J]. 生态学报, 2018, 38(16):229-239.
[30] 宋 影, 辜夕容, 严海元, 等. 中亚热带马尾松林凋落物分解过程中的微生物与酶活性动态[J]. 环境科学, 2014, 35(3):1151-1158.
[31] 陈信力, 刁娇娇, 郑 婷, 等. 间伐对重阳木人工林土壤微生物量碳氮和酶活性影响[J]. 林业科技开发, 2014, 28(2):59-63.
[32] 郭传阳, 林开敏, 郑鸣鸣, 等. 间伐对杉木人工林土壤微生物生物量碳氮的短期影响[J]. 南京林业大学学报:自然科学版, 2020, 44(5):125-131.
[33] 郑宪志, 张星星, 林伟盛, 等. 不同树种对土壤可溶性有机碳和微生物生物量碳的影响[J]. 福建师大学报:自然科学版, 2018, 34(6):86-93.
[34] 张 雪, 韩士杰, 王树起, 等. 长白山白桦林不同演替阶段土壤有机碳组分的变化[J]. 生态学杂志, 2016, 35(2):282-289.