[1] Luo L, Meng H, Gu J D. Microbial extracellular enzymes in biogeochemical cycling of ecosystems[J]. Journal of Environmental Management, 2017, 197: 539-549. doi: 10.1016/j.jenvman.2017.04.023
[2] Sinsabaugh R L, Belnap J, Findlay S G,<italic> et al</italic>. Extracellular enzyme kinetics scale with resource availability[J]. Biogeochemistry, 2014, 121(2): 287-304. doi: 10.1007/s10533-014-0030-y
[3] 许淼平, 任成杰, 张 伟, 等. 土壤微生物生物量碳氮磷与土壤酶化学计量对气候变化的响应机制[J]. 应用生态学报, 2018, 29(7):2445-2454.
[4] Allison V J, Condron L M, Peltzer D A,<italic> et al</italic>. Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand[J]. Soil Biology and Biochemistry, 2007, 39(7): 1770-1781. doi: 10.1016/j.soilbio.2007.02.006
[5] 丁怡飞, 曹永庆, 姚小华, 等. 鼠茅草间作对油茶林地土壤养分及酶活性的影响[J]. 林业科学研究, 2018, 31(2):170-175.
[6] 赵睿宇, 李正才, 王 斌, 等. 毛竹林地覆盖和翻耕对土壤酶活性及土壤养分含量的影响[J]. 林业科学研究, 2019, 32(5):67-73.
[7] Hill B H, Elonen C M, Jicha T M,<italic> et al</italic>. Sediment microbial enzyme activity as an indicator of nutrient limitation in Great Lakes coastal wetlands[J]. Freshwater Biology, 2006, 51(9): 1670-1683. doi: 10.1111/j.1365-2427.2006.01606.x
[8] Schimel J P, Weintraub M N. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model[J]. Soil Biology and Biochemistry, 2003, 35(4): 549-563. doi: 10.1016/S0038-0717(03)00015-4
[9] Sinsabaugh R L, Lauber C L, Weintraub M N,<italic> et al</italic>. Stoichiometry of soil enzyme activity at global scale[J]. Ecology Letters, 2008, 11(11): 1252-1264. doi: 10.1111/j.1461-0248.2008.01245.x
[10] Fanin N, Moorhead D, Bertrand I. Eco-enzymatic stoichiometry and enzymatic vectors reveal differential C, N, P dynamics in decaying litter along a land-use gradient[J]. Biogeochemistry, 2016, 129(1-2): 21-36. doi: 10.1007/s10533-016-0217-5
[11] Sinsabaugh R L, Hill B H, Shah J J F. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment[J]. Nature, 2009, 462(7274): 795-798. doi: 10.1038/nature08632
[12] Waring B G, Weintraub S R, Sinsabaugh R L. Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils[J]. Biogeochemistry, 2014, 117(1): 101-113. doi: 10.1007/s10533-013-9849-x
[13] Xu Z, Yu G, Zhang X,<italic> et al</italic>. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC)[J]. Soil Biology and Biochemistry, 2017, 104: 152-163. doi: 10.1016/j.soilbio.2016.10.020
[14] 薛 立, 邝立刚, 陈红跃, 等. 不同林分土壤养分、微生物与酶活性的研究[J]. 土壤学报, 2003, 40(2):280-285. doi: 10.3321/j.issn:0564-3929.2003.02.018
[15] 张雅茜, 方 晰, 冼应男, 等. 亚热带区4种林地土壤微生物生物量碳氮磷及酶活性特征[J]. 生态学报, 2019, 39(14):5326-5338.
[16] 李春萍, 王世伟, 丁俊杰, 等. 施氮水平对核桃细根呼吸速率及相关酶活性的影响[J]. 林业科学研究, 2019, 32(6):56-62.
[17] 左 巍, 贺康宁, 田 赟, 等. 青海高寒区不同林分类型凋落物养分状况及化学计量特征[J]. 生态学杂志, 2016, 35(9):2271-2278.
[18] 弓文艳, 陈丽华, 郑学良. 基于不同林分类型下土壤碳氮储量垂直分布[J]. 水土保持学报, 2019, 33(1):152-157, 164.
[19] Yin H J, Wheeler E, Phillips R P. Root-induced changes in nutrient cycling in forests depend on exudation rates[J]. Soil Biology and Biochemistry, 2014, 78: 213-221. doi: 10.1016/j.soilbio.2014.07.022
[20] 袁传武, 余崇彪, 石冰天, 等. 神农架林区森林资源可持续发展途径探讨[J]. 湖北林业科技, 2007(5):47-50. doi: 10.3969/j.issn.1004-3020.2007.05.014
[21] 周志文, 潘剑君, 居为民, 等. 神农架不同坡位3种林型土壤碳氮比分布特征[J]. 水土保持学报, 2014, 28(4):210-217.
[22] 崔鸿侠, 肖文发, 黄志霖, 等. 神农架3种针叶林土壤碳储量比较[J]. 东北林业大学学报, 2014, 42(3):69-72. doi: 10.3969/j.issn.1000-5382.2014.03.016
[23] 谢宗强, 申国珍, 周友兵, 等. 神农架世界自然遗产地的全球突出普遍价值及其保护[J]. 生物多样性, 2017, 25(5):490-497. doi: 10.17520/biods.2016268
[24] 关松荫. 土壤酶及其研究法[J]. 北京: 农业出版社, 1986.
[25] Turner B L, Wright S J. The response of microbial biomass and hydrolytic enzymes to a decade of nitrogen, phosphorus, and potassium addition in a lowland tropical rain forest[J]. Biogeochemistry, 2014, 117(1): 115-130. doi: 10.1007/s10533-013-9848-y
[26] Guo Z, Zhang X, Green S M,<italic> et al</italic>. Soil enzyme activity and stoichiometry along a gradient of vegetation restoration at the Karst Critical Zone Observatory in Southwest China[J]. Land Degradation and Development, 2019, 30(16): 1916-1927. doi: 10.1002/ldr.3389
[27] 曾曙才, 苏志尧, 古炎坤, 等. 广州白云山风景名胜区主要林分类型凋落物的研究[J]. 应用生态学报, 2003, 14(1):154-156. doi: 10.3321/j.issn:1001-9332.2003.01.035
[28] 吉艳芝, 冯万忠, 陈立新, 等. 落叶松混交林根际与非根际土壤养分、微生物和酶活性特征[J]. 生态环境, 2008, 17(1):339-343.
[29] 赵京京, 王超群, 董玉红, 等. 细菌肥料对湿地松幼龄林生长及土壤性质的影响[J]. 林业科学研究, 2019, 32(1):153-159.
[30] 张星星, 杨柳明, 陈 忠, 等. 中亚热带不同母质和森林类型土壤生态酶化学计量特征[J]. 生态学报, 2018, 38(16):5828-5836.
[31] 乔 航, 莫小勤, 罗艳华, 等. 不同林龄油茶人工林土壤酶化学计量及其影响因素[J]. 生态学报, 2019, 39(6):1887-1896.