[1] Song X Z, Zhou G M, Gu H H, et al. Management practices amplify the effects of N deposition on leaf litter decomposition of the Moso bamboo forest[J]. Plant and Soil, 2015, 395(1-2): 391-400. doi: 10.1007/s11104-015-2578-2
[2] Song X, Zhou G, Jiang H, et al. Carbon sequestration by Chinese bamboo forests and their ecological benefits: assessment of potential, problems, and future challenges[J]. Environmental Reviews, 2011, 19(1): 418-428.
[3] 谢 菲, 梁 军. 立地条件对毛竹林枯梢病感病指数的关系效应研究[J]. 林业科学研究, 2019, 32(3):121-126.
[4] 王淑英. 中国森林植物检疫对象[M]. 北京: 中国林业出版社, 1996.
[5] 魏初奖. 毛竹枯梢病病原菌竹喙球菌风险性分析[J]. 南京林业大学学报: 自然科学版, 2005, 29(2):38-42.
[6] Nesme T, Metson, Geneviève S, Bennett E M. Global phosphorus flows through agricultural trade[J]. Global Environmental Change, 2018, 50: 133-141. doi: 10.1016/j.gloenvcha.2018.04.004
[7] Maharajan T, Ceasar S A, Ajeesh Krishna T P, et al. Utilization of molecular markers for improving the phosphorus efficiency in crop plants[J]. Plant Breeding, 2017, 137(1): 10-26.
[8] Lambers H, Plaxton W C. Phosphorus: back to the roots[J]. Annual Plant Reviews online, 2015: 48.3-22.
[9] Chen Q, Liu S. Identification and characterization of the phosphate-solubilizing bacterium pantoea sp. S32 in reclamation soil in Shanxi, China[J]. Frontiers in Microbiology, 2019, 10: 2171. doi: 10.3389/fmicb.2019.02171
[10] Afzal I, Shinwari Z K, Sikandar S, et al. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants[J]. Microbiological Research, 2019, 221: 36-49. doi: 10.1016/j.micres.2019.02.001
[11] Lodewyckx C, Vangronsveld J, Porteous F, et al. Endophytic bacteria and their potential applications[J]. Critical Reviews in Plant Sciences, 2002, 21(6): 583-606. doi: 10.1080/0735-260291044377
[12] Carrión V J, Perez-Jaramillo J, Viviane C, et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome[J]. Science, 2019, 366(6465): 606. doi: 10.1126/science.aaw9285
[13] Meyer G, Maurhofer M, Frossard E, et al. Pseudomonas protegens CHA0 does not increase phosphorus uptake from 33P labeled synthetic hydroxyapatite by wheat grown on calcareous soil[J]. Soil Biology and Biochemistry, 2019, 131: 217-228. doi: 10.1016/j.soilbio.2019.01.015
[14] Kumar D S S, Hyde K D. Biodiversity and tissue-recurrence of endophytic fungi in Tripterygium wilfordii[J]. Fungal Diversity, 2004, 17: 69-90.
[15] 赵 斌, 林 会, 何绍江. 微生物学实验[M]. 北京: 科学出版社, 2014.
[16] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
[17] 张 扬, 郭春兰, 陈伏生, 等. 毛竹根际2株溶磷解钾促生细菌的筛选鉴定[J]. 江西农业大学学报, 2018, 40(4):759-768.
[18] 蔡妙英, 东秀珠. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001.
[19] Clarke J D. Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation[J]. Cold Spring Harbor Protocols, 2009, 4(3): 1-2.
[20] Low A, Zhao S, Rogers M J, et al. Isolation, characterization and bioaugmentation of an acidotolerant 1, 2-dichloroethane respiring Desulfitobacterium species from a low pH aquifer[J]. FEMS Microbiology Ecology, 2019, 95(5): 055.
[21] Compant S, Duffy B, Nowak J, et al. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects[J]. Applied and Environmental Microbiology, 2005, 71(9): 4951-4959. doi: 10.1128/AEM.71.9.4951-4959.2005
[22] Lecomte C, Alabouvette C, Edel-Hermann V, et al. Biological control of ornamental plant diseases caused by Fusarium oxysporum: A review[J]. Biological Control, 2016, 101: 17-30. doi: 10.1016/j.biocontrol.2016.06.004
[23] Wheeler G S, Duncan J G, Wright S. Predicting spillover risk to non-target plants pre-release: Bikasha collaris a potential biological control agent of Chinese tallowtree (Triadica sebifera)[J]. Biological Control, 2017, 108: 16-21. doi: 10.1016/j.biocontrol.2017.02.003
[24] Daungfu O, Youpensuk S, Lumyong S. Endophytic bacteria isolated from citrus plants for biological control of citrus canker in lime plants[J]. Tropical Life Sciences Research, 2019, 30(1): 73-78. doi: 10.21315/tlsr2019.30.1.5
[25] 李亮亮, 谈家金, 陈凤毛. 两株松材线虫拮抗细菌的筛选和鉴定[J]. 南京林业大学学报: 自然科学版, 2017, 41(4):37-41.
[26] Wicaksono W A, Jones E E, Casonato S, et al. Biological control of Pseudomonas syringae pv. actinidiae (Psa), the causal agent of bacterial canker of kiwifruit, using endophytic bacteria recovered from a medicinal plant[J]. Biological Control, 2018, 116: 103-112. doi: 10.1016/j.biocontrol.2017.03.003
[27] 杨海莲, 孙晓璐. 植物根际促生细菌和内生细菌的诱导抗病性的研究进展[J]. 植物病理学报, 2000, 30(2):106-110.
[28] 徐刘平, 尹燕妮, 李师默, 等. 拮抗细菌对土传病原菌的作用机理[J]. 中国生物防治学报, 2006, 22(1):10-14.
[29] Vassileva M, Serrano M, Bravo V, et al. Multifunctional properties of phosphate-solubilizing microorganisms grown on agro-industrial wastes in fermentation and soil conditions[J]. Applied Microbiology and Biotechnology, 2010, 85(5): 1287-1299. doi: 10.1007/s00253-009-2366-0
[30] 姚玉玲, 王 颖, 王玉琴, 等. 矮生嵩草内生细菌溶磷、抑菌和产IAA能力的测定及鉴定[J]. 草地学报, 2014, 22(6):1252-1257.
[31] Rojas-Solís D, Zetter-Salmón E, Contreras-Pérez M, et al. Pseudomonas stutzeri E25 and Stenotrophomonas maltophilia CR71 endophytes produce antifungal volatile organic compounds and exhibit additive plant growth-promoting effects[J]. Biocatalysis and Agricultural Biotechnology, 2018, 13: 46-52. doi: 10.1016/j.bcab.2017.11.007
[32] Zhao L, Xu Y, Lai X. Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties[J]. Brazilian Journal of Microbiology, 2017, 49(2): 269-278.
[33] 金梦军, 李珊珊, 田文波, 等. 高寒草地青藏苔草拮抗内生细菌筛选、鉴定及其促生作用测定[J]. 植物保护学报, 2019, 46(4):779-786.
[34] 吴高洋, 陈伏生, 万松泽, 等. 毛竹根际新黑曲霉的解磷特性及促生作用[J]. 林业科学研究, 2019, 32(4):144-151.
[35] Zhang Y, Chen F S, Wu X Q, et al. Isolation and characterization of two phosphate-solubilizing fungi from rhizosphere soil of moso bamboo and their functional capacities when exposed to different phosphorus sources and pH environments[J]. Plos One, 2018, 13(7): e0199625. doi: 10.1371/journal.pone.0199625
[36] 郭晓敏, 牛德奎, 陈 防. 毛竹林平衡施肥与营养管理[M]. 北京: 科学出版社, 2013.
[37] Li L M, Zhang Z, Pan S Y, et al. Characterization and metabolism effect of seed endophytic bacteria associated with peanut grown in south China[J]. Frontiers in Microbiology, 2019, 10: 2659. doi: 10.3389/fmicb.2019.02659