• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

松树分子标记辅助育种研究进展

黄少伟

引用本文:
Citation:

松树分子标记辅助育种研究进展

  • 基金项目:

    广东省科技攻关项目(C20303, 2003C201015) ,国家“十五”科技攻关子课题(2002BA515B0103)

Progress on the Research of Marker-aided Breeding of Pinus spp.

  • 摘要: 松树是世界上森林生态系统和人工林的重要树种,松树的遗传改良开展早,进展快,成效大。分子标记技术为缩短育种周期,提高育种效率提供了有力的工具。本文回顾了世界上松树分子标记遗传图谱构建、比较遗传作图、数量性状位点定位和标记辅助选择的研究进展。已经构建遗传连锁图的林木有13个属,近40个树种,其中松树占40%,而大多数松树遗传图谱仍然是不完整的,不能覆盖全基因组;比较遗传作图显示松属树种具有高度的遗传保守性;数量性状位点(QTL)定位表明,大多数性状的遗传基础存在着主效基因,为开展分子标记辅助选择提供了良好的基础。杂种松部分重要性状的遗传控制中存在着树种效应,对标记辅助选择和育种策略的制订具有指导意义。
  • [1]

    Brown G R, Kadel III E E, BassoniD L, et al. Anchored referenceloci in loblolly p ine (Pinus taeda L.) for integrating p ine genomics[J]. Genetics, 2001, 159: 799~809
    [2] 潘志刚,游应天. 湿地松、火炬松、加勒比松引种栽培[M]. 北京:北京科学技术出版社, 1991

    [3]

    Mckeand S E,Bridgwater F E. Third-generation Breeding Strategy forthe North Carilina State University-Industry Cooperative Tree Imp rovement Program [A]. In: Proc IUFRO Con. S2. 02-07 BreedingTrop ical Trees [C]. 1992: 234~240
    [4]

    Tarbert J T, Weir R J, Arnold R D. Costs and benefits of a matureFirst-generation loblolly p ine tree imp rovement p rogram [J]. J For,1985, 83: 162~166
    [5]

    Wier R J, Todd D. Third cycle breeding strategy: a descrip tion andeconomic app raisal for the North Carolina State University-IndustryCooperative Tree Imp rovement Program [A]. In: Proc 24 th Can TreeImp rov Ass [C]. Fredricton, New Brunswich, Canada. August 15- 19, 1993: 41~51
    [6]

    Shelbourne C J A, Burdon R D, Carson S D, et al. Developmentp lan for radiata p ine breeding [M]. Forest Research Institute, Rotorua, New Zealand, 1986
    [7]

    Hains R J. Mass p ropagation by cuttings, biotechnologies, and thecap ture of genetic gain [A]. In: Proc AFOCEL-IUFRO Symposium“Mass p roduction technology for genetically imp roved fast growingforest tree species”[C]. Bordeaux, France, 14 - 18 Sep t. 1992, 2:137~150
    [8]

    NiklesD G. The first 50 years of the evolution of forest tree imp rovement in Queensland [A]. In: DietersM J, Matheson A C,NiklesDG, et al. Tree Imp rovement for Sustainable Trop ical Forestry [C].Proceedings of the QFR I-IUFRO Conference, 27 October-1November1996, Caloundra, Queensland, Australia: 51~64
    [9]

    Nikles D G. Experience with some Pinus hybrids in Queensland,Australia[A]. In: Dungey H S, DietersM J, Nikles D G. Hybridand Genetics of Forest Trees [C]. Proceedings of QFR I/CRC2SPFSymposium, 9 - 14 Ap ril 2000, Noosa, Queensland, Australia: 27~43
    [10] 李宪政, 赵奋成, 张应中,等. 湿地松与加勒比松杂种第一代生长研究初报[J]. 广东林业科技, 1999, 15 (1) : 1~7

    [11] 张应中, 赵奋成, 钟岁英,等. 湿地松×加勒比松杂种扦插繁殖技术研究[J]. 林业科学研究, 2002, 15 (4) : 437~443

    [12] 黄少伟. 杂种松重要性状QTL定位与标记辅助选择研究[D].广州:华南农业大学, 2004

    [13] 甘四明, 苏晓华. 林木基因组学研究进展[J]. 植物生理与分子生物学学报, 2006, 32 (2) : 133~142

    [14]

    HarryD E, Temesgen B,NealeD B. Codominant PCR-basedmarkers for Pinus taeda developed from mapped cDNA clones [J]. TheorApp l Genet, 1998, 97: 327~336
    [15]

    Temesgen T, Brown G R, Harry D E, et al. Genetic mapp ing ofexp ressed sequence tag polymorphism (ESTp) markers in loblollyp ine (Pinus taeda L.) [J]. Theor App l Genet, 2001, 102: 664~675
    [16]

    Lesp inasse D, Rodier-GoudM, GriverL, et al. A saturated geneticlinkage map of rubber tree (Havea spp.) based on RFLP, AFLP,microsatellite, and isozyme markers [J]. Theor App l Genet,2000, 100: 127~138
    [17]

    Kaya Z, NealD B. Linkage mapp ing in Turkish p ine (Pinus brutiaTen.) using random amp lified polymorphic DNA (RAPD) markers[J]. Silvae Genetica, 1995, 44: 110~116
    [18]

    Li C, Yeh F C. Construction of a framework map in Pinus contortaSubsp. Latifolia using random amp lified polymorphic DNA markers[J]. Genome, 2001, 44: 147~153
    [19]

    Nelson C D, NanceW L, Doudrick R L. Apartial genetic linkagemap of slash p ine (Pinus elliottii Engelmann var. elliottii) based onrandom amp lified polymorphic DNAs [J]. Theor App l Genet,1993, 87: 145~151
    [20]

    Travis S E, Ritland K, Whiteham T G, et al. A genetic map ofPinyon p ine (Pinus edulis) based on amp lified fragment length polymorphisms [J]. TheorApp l Genet, 1998, 97: 871~880
    [21]

    DeveyM, Carson S, Nolan M, et al. Random amp lified polymorphic DNA markers tightly linked to a gene for resistance to whitep ine blister rust in sugar p ine [J]. Proc Natl Acad Sci USA,1995, 92: 2066~2070
    [22] 尹佟明, 朱立煌, 黄敏仁. 利用RAPD标记和单株树大配字体构建马尾松的分子标记连锁图谱[J]. 植物学报, 1997, 39(7) : 607~612

    [23]

    Nelson C D, Kubisiak TL, StineM, et al. A Genetic LinkageMapof Longleaf Pine (Pinus palustrisMill.) Based on Random Amp lified Polymorphic DNAs [J]. Journal of Heredity, 1994, 85: 433~439
    [24]

    Plomion C, Bahuman N, Durel C E, et al. Genomic mapp ing inmaritime p ine (Pinus pinaster) using RAPD markers [J]. Heredity, 1995, 74: 661~668
    [25]

    Plomion C, O’MalleyDM, Durel C E1 Genomic mapp ing in maritime p ine (Pinus pinaster) Comparison of two RAPD map s usingselfed and open-pollinated seeds of the same individual [J]. TheorApp l Genet, 1995, 90: 1028~1034
    [26]

    DeveyM E, Bell J C, Smith D N, et al. A genetic map for Pinusradiata based on RFLP, RAPD, and microsatellite markers [J].TheorApp l Genet, 1996, 92: 673~679
    [27]

    DeveyM, SewellM M, Uren T L, et al. Comparative mapp ing inloblolly and radiata p ine using RFLP and microsatellite markers[J]. TheorApp l Genet, 1999, 99: 656~662
    [28]

    Yin TM, Wang X R, Anderson B, et al. Nearly comp lete geneticmap s of Pinus sylvestris L. (Scots p ine) constructed by AFLPmarker analysis in a full-sib family [J]. TheorApp l Genet, 2003,106: 1075~1083
    [29]

    Komulainen P, Brown G R, MikkonenM, et al. Comparing ESTbased genetic map s between Pinus sylvestris and Pinus taeda [J].TheorApp l Genet, 2003, 107 (4) : 667~678
    [30]

    Echt C S, Nelson C D. Linkage mapp ing and genome length ineastern white p ine (Pinus strobes L.) [J]. Theor App l Genet,1997, 94 (8) : 3~37
    [31]

    DeveyM E, Fiddler TA, Liu B H, et al. A RFLP linkagemap forloblolly p ine based on a three2generation outbred pedigree [J].TheorApp l Genet, 1994, 88: 273~278
    [32]

    GrooverA M, DeveyM E, Lee J, et al. Identification of quantitative trait loci influencing wood specific gravity in an outbred pedigree of loblolly p ine [J]. Genetics, 1994, 138: 1293~1300
    [33]

    Remington D L, Whetten RW, Liu B H, et al. Construction of anAFLP genetic map with nearly comp lete genome coverage in Pinustaeda [J]. TheorApp l Genet, 1999, 98: 1279~1292
    [34]

    SewellMM, Sherman B K,Neale D B. A consensusmap for loblolly p ine (Pinus taeda L.) I. Construction and integration of individual linkage map s from two outbred three2generation pedigree[J]. Genetics, 1999, 151: 321~330
    [35]

    SewellM M, Bassoni D L, Megraw R A, et al. Identification ofQTLs influencingwood p roperty traits in loblolly p ine (Pinus taedaL.) I. Physical wood p roperties [J]. Theor App l Genet, 2000,101: 1273~1281
    [36]

    Zhou Y, Gwaze D P, Bui T, et al. No clustering for linkage mapbased on low-copy and undermethylated microsatellites [J]. Genome, 2003, 45: 809~816
    [37]

    Kondo T, Terada K, Hayashi E, et al. RAPD markers linked to agene for resistance to p ine needle gallmidge in Japanese black p ine(Pinus thunbergii) [J]. Theor App l Genet, 2000, 100: 391~395
    [38]

    Hayashi E, Kondo T, Terada K, et al. Linkage map of Japaneseblack p ine based on AFLP and RAPD markers including markerslinked to resistance against the p ine needle gall midge [J]. TheorApp l Genet, 2001, 102: 871~875
    [39]

    Kim Y Y, Choi H S, Kang B Y. An AFLP2based linkage map ofJapanese red p ine (Pinus densiflora) using hap loid DNA samp les ofmegagametophytes from a single maternal tree [J]. Molecules andCells, 2005, 20 (2) : 201~209
    [40]

    Dale G. Genetic mapp ing in an interspecific hybrid between Pinuscaribaea and Pinus elliottii [D]. University of Queensland, Brisbane, Queensland, Australia, 1994
    [41]

    ShepherdM, CrossM, DietersM J, et al. Genetic map s for Pinuselliottii var. elliottii and P. caribaea var. hondurensis using AFLPand microsatellite markers [J]. Theor App l Genet, 2003, 106:1409~1419
    [42]

    Kubisiak TL, Nelson C D, NanceW L. RAPD linkagemapp ing ina longleaf p ine′slash p ine F1 family [J]. TheorApp l Genet, 1995,90: 1119~1127
    [43]

    Bradshaw H D J, Stettler R F. Molecular genetics of growth and development in Populus I. Trip loidy in hybrid pop lar [J]. TheorApp l Genet, 1993, 86: 301~307
    [44]

    Bradshaw H D J, VillarM, Watson B D, et al. Molecular geneticsof growth and development in Populus III. A genetic linkagemap ofa hybrid pop lar composed of RFLP, STS, and RAPD markers [J].TheorApp l Genet, 1994, 89: 167
    [45]

    Kriebel H B. DNA sequence components of the Pinus strobes nuclear genome [J]. Can J For Res, 1985, 15: 1~4
    [46]

    Wakamiya I, Newton R J, Johnston J S. Genome size and environment factors in the genus Pinus [J]. Am J Bot, 1993, 80: 1235~1241
    [47]

    Williams C G. Peculiarity of the p ine genome: relevance for biotechnology p rogram [A]. In: Dungey H S, DietersM J, NiklesDG. Hybrid and Genetics of Forest Trees[C]. Proceedings ofQFR I/CRC-SPF Symposium, 9 - 14 Ap ril 2000, Noosa, Queensland,Australia: 168
    [48] 王明庥. 林木遗传育种学[M]. 北京: 中国林业出版社, 2001:336~367

    [49]

    Sax K, Sax H J. Chromosome number and morphology in the conifers [J]. J Arnold Arbor, 1933, 14: 356~375
    [50]

    Auckland L, Bui T, Zhou Y, et al. ConiferMicrosatellite Handbook [M]. TexasA&M, College Station, Texas, 2002
    [51]

    DeveyM, Bell J, Moran G. A set ofmicrosatellite markers for fingerp rinting and breeding app lications in Pinus radiata [J]. Genome, 2001, 45: 984~989
    [52]

    ShepherdM, CrossM, Maguire TL, et al. Transpecificmicrosatellites for hard p ines [J]. TheorApp l Genet, 2002, 104: 819~827
    [53]

    WilliamsC G. How will genomicmapp ing shape forest tree breedingstrategy? [A] In: DietersM J,Matheson A C, Nikles D G, et al.Tree Imp rovement for Sustainable Trop ical Forestry [C]. Proceedings of the QFR I2IUFRO Conference, 27 October21November 1996,Caloundra, Queensland, Australia: 464~466
    [54]

    Lagercrantz U. Comparative mapp ing between A rabidopsis thalianaand B rassica nigra indicates that Brassica genome have evolvedthrough extensive genome rep lication accompanied by chromosomefusions and frequent rearrangements [J]. Genetics, 1998, 150:1217~1228
    [55]

    Prager EM, FowlerD P, Wilson A C. Rates of evolution of conifers [J]. Evolution, 1976, 30: 637~649
    [56]

    Krutovsky K V, TroggioM, Brown G R, et al. Comparative mapp ing in the Pinaceae [J]. Genetics, 2004, 168: 447~461
    [57]

    Pederick L. Chromosomal relationship s among Pinus species [J].Silvi Genet, 1972, 21: 171~180
    [58]

    ConkleM T. Isozyme variation and linkage in six confiner species[A]. In: Proc of the Symposium on Isozymes in North AmericanForest Trees and Forest Insects[C]. USDA For Serv Gen Tech RepPSW248, 1981: 11~17
    [59]

    AhujaM, DeveyM, GrooverA, et al. Mapped DNA from loblollyp ine can be used for restriction fragment length polymorphisms inother conifers [J]. TheorApp l Genet, 1994, 88: 279~282
    [60]

    Lerceteau E, Plomion C, Andresson B. AFLP mapp ing and detection of quantitative trait loci (QTLs) for economically importanttraits in Pinus sylvestris: a p reliminary study [J]. Mol Breed,2001, 6: 451~458
    [61]

    Yazdani R, Yeh F C, Rimsha J. Genomic mapp ing of Pinus sylvestris (L.) using random amp lified polymorphic DNA markers [J].For Genet, 1995, 2: 109~116
    [62]

    LuM Z, Szmidt A E, Wang X2R. Inheritance of RAPD fragmentsin hap loid and dip loid tissue of Pinus sylvestris (L.) [J]. Heredity, 1995, 74: 582~589
    [63]

    Hurme P, Savolainen O. Comparison of homology and linkage ofRAPD markers between individual trees of Scots p ine (Pinus sylvestris L.) [J]. Mol Ecol, 1999, 8: 15~22
    [64]

    Echt C S, Vendramin G G, Nelson C D, et al. MicrosatellitesDNAas shared genetic markers among conifer species [J]. Can J ForRes, 1999, 29: 365~371
    [65]

    Cato S A, Gardner R C, Kent J, et al. A rap id PCR-based methodfor geneticallymapp ing ESTs [J]. TheorApp l Genet, 2001, 102:296~306
    [66]

    Perry D J, Bousquet J. Sequence-tagged-site markers of arbitrarygenes: development, characterization and analysis of linkage inblzck sp ruce [J]. Genetics, 1998, 149: 1089~1098
    [67]

    PavyN, Laroche J, Bousquet J, et al. Large-scale statistical analysis of secondary xylem ESTs in p ine [J]. PlantMol Bio, 2005,57: 203~224
    [68]

    Bradshaw H D J, Foster G S. Marker-aided selection and p ropagation systems in tree: advantages of cloning for studying quantitativeinheritance [J]. Can J For Res, 1992, 22: 1044~1049
    [69]

    Bradshaw H D J, Stettler R F. Molecular genetics of growth and development in Populus IV. Mapp ing QTLs with large effects ongrowth, form, and phenology traits in a forest tree [J]. Genetics,1995, 139: 963~973
    [70]

    Soller M, Meckmann J S. Marker-based mapp ing of quantitativetrait loci using rep licated p rogenies [J]. TheorApp l Genet, 1990,80: 205~208
    [71] 苏晓华, 李金花, 陈伯望,等. 杨树叶片数量性状相关联标记及其图谱定位研究[J]. 林业科学, 2000, 36 (1) : 33~70

    [72] 黄秦军, 苏晓华, 黄烈健,等. 美洲黑杨×青杨木材性状QTLs定位研究[J]. 林业科学, 2004, 40 (2) : 55~60

    [73]

    ByrneM, Murrell J C, Owen J V, et al. Identification and mode ofaction of quantitative trait loci affecting seedling height and leaf areain Eucalyptus nitens [J]. TheorApp l Genet, 1997, 94: 674~681
    [74]

    ByrneM, Murrell J C, Owen J V, et al. Mapp ing of quantitativetrait loci influencing frost tolerance in Eucalyptus nitens [J]. TheorApp l Genet, 1997, 95: 975~979
    [75]

    DeveyM E, Carson S, NolanM, et al. QTL association for densityand diameter in Pinus radiata and the potential formatker-aided selection [A]. In: Wilton A. 49 th Annual meeting of the GeneticsSociety of Australia [C]. GSA, University of New South Wale,Sydney, New SouthWales, Australia, 2002: 28
    [76]

    Grattapaglia D, Bertolucci F L, Sederoff R R. Genetic mapp ing ofQTls controlling vegetative p ropagation in Eucalyptus grandis andE. urophylla using a p seudo-testcross strategy and RAPD markers[J]. TheorApp l Genet, 1995, 90: 933~947
    [77]

    Grattapaglia D, Bertolucci F L G, Penchel R, et al. Genetic mapp ing of quantitative trait loci controlling growth and wood qualitytraits in Eucalyptus grandis using a maternal half-sib family andRAPD markers [J]. Genetics, 1996, 144: 1205~1214
    [78]

    Plomion C, Durel C E. Estimation of the average effects of specificalleles detected by the p seudo-testcrossQTL mapp ing strategy [J].Genet Sel Evol, 1996, 28: 223~235
    [79]

    Plomion C, Durel C E, O’MalleyD M. Genetic dissection of heightin maritime p ine seedlings raised under accelerated growth conditions [J]. TheorApp l Genet, 1996, 93: 849
    [80]

    Shepherd M, Chaparro J X, Teasdale R. Genetic mapp ing ofmonoterpene composition in an interspecific eucalyp t hybrid [J].TheorApp l Genet, 1999, 99: 1207~1215
    [81]

    ShepherdM, CrossM, DietersM J, et al. Branch architecture QTLfor Pinus elliottii var. elliottii ×Pinus caribaea var. hondurensis hybrids [J]. Ann For Sci, 2002, 59: 617~625
    [82]

    Shepherd M, CrossM, Dieters M J, et al. Genetics of physicalwood p roperties and early growth in a trop ical p ine hybrid [J]. CanJ For Res, 2003, 33: 1923~1932
    [83]

    Thamarus KA, Groom K, Merrell J, et al. A genetic linkage mapdfor Eucalyptus globuleswith candidate loci forwood, fibre, and floral traits [J]. TheorApp l Genet, 2002, 104: 379~387
    [84]

    DeveyM E, Groom KA, NolanM F, et al. Detection and verification of quantitative trait loci for resistance to Dothistroma needleblight in Pinus radiate [J]. TheorApp l Genet, 2004, 108: 1056~1063
    [85]

    Wheeler N C, Jermstad K D, Krutovsky K, et al. Mapp ing ofquantitative trait loci controlling adap tive traits in coastalDouglas-firⅣ. Cold-hardiness QTL verification and candidate gene mapp ing[J]. Mol Breed, 2005, 15: 145~156
    [86]

    Bradshaw H D J. Case history in genetics of long-lived p lants: molecular app roaches to domestication of a fast-growing forest tree:Populus [A]. In: Paterson A H. MolecularDissection of Comp lexTraits [M]. Boca Raton: CRC Press, 1998: 219~228
    [87]

    Bernatzky R, Mulcahy K L. Marker-aided selection in a backcrossbreeding p rogram for resistance to chestnut blight in the Americanchestnut [J]. Can J For Res, 1992, 22: 1332~1337
    [88]

    Strauss S H, Lande R, Namkoog G. Limitations ofmolecular-aidedselection in forest tree breeding [J]. Can J For Res, 1992, 22:1050~1061
    [89]

    ShepherdM, Huang S, Eggler P, et al. Congruence in QTL for adventitious rooting in Pinus elliottii ×Pinus caribaea hybrids resolvesbetween and within-species effects [J]. MolBreed, Published Online: 29 June, 2006 (http: / /dx. doi. org/10. 1007 / s11032-0069006-5)
  • [1] 张蕴哲刘红霞邬荣领李明亮胡建军尹伟伦韩一凡 . 毛新杨×毛白杨AFLP分子遗传图谱. 林业科学研究, 2003, 16(5): 595-603.
    [2] 黄秦军苏晓华张香华 . 利用AFLP和SSR标记构建美洲黑杨×青杨遗传图谱. 林业科学研究, 2004, 17(3): 291-299.
    [3] 张照远甘四明李发根李梅翁启杰胡哲森 . EST-CAPS标记在尾叶桉和细叶桉遗传图谱构建中的应用. 林业科学研究, 2007, 20(2): 230-234.
    [4] 杨宝君胡凯基王秋丽孙玉林吴政民汪企明 . 松树对松材线虫抗性的研究*. 林业科学研究, 1993, 6(3): 249-255.
    [5] 花晓梅骆贻颛刘国龙 . 松树Pt菌剂育苗菌根化研究*. 林业科学研究, 1995, 8(3): 258-264.
    [6] 花晓梅刘国龙张效林余良富曾平生黄冬青 . 松树截根菌根化育苗和造林的研究*. 林业科学研究, 1995, 8(5): 535-543.
    [7] 弓明钦王凤珍陈羽陈应龙 . 松茸菌株对6种松树幼苗的感染及其菌根解剖学研究. 林业科学研究, 2001, 14(4): 356-361.
    [8] 郑来友李文钿成小飞花晓梅 . 彩色豆马勃与松树形成内外生菌根的研究. 林业科学研究, 2003, 16(3): 262-268.
    [9] 陈孝英何礼华 . 松树繁殖新途径—针叶束嫁接技术. 林业科学研究, 1989, 2(2): 109-112.
    [10] 沈伯葵葛明宏张明海薛梦澜姚长林 . 松梢枯病及其病原的研究(一). 林业科学研究, 1992, 5(6): 659-664.
    [11] 叶建仁解春霞王永银程淑婉 . 松针褐斑病菌致病机制的研究. 林业科学研究, 1998, 11(3): 243-248.
    [12] 杨宝君汪来发赵文霞徐福元张培李占鹏 . 松材线虫病的潜伏侵染及松墨天牛传播新途径. 林业科学研究, 2002, 15(3): 251-255.
    [13] 吕本树姜景民孙海菁 . 火炬松树干通直度遗传变异及选择效果初探. 林业科学研究, 1997, 10(6): 668-672.
    [14] 于晓丽李发根翁启杰周长品甘四明 . 桉树扦插生根和生长性状的QTL定位. 林业科学研究, 2011, 24(2): 200-204.
    [15] 黄海燕杜红岩乌云塔娜朱高浦 . 基于SSR分子标记的杜仲遗传多样性体系建立. 林业科学研究, 2013, 26(6): 795-799.
    [16] 郭丽琴李友丽饶国栋张建国 . 利用SRAP分子标记分析杨属遗传变异和亲缘关系. 林业科学研究, 2019, 32(3): 88-96. doi: 10.13275/j.cnki.lykxyj.2019.03.012
    [17] 王曦茁汪来发曹业凡胡坚汪祥覃艳王永春 . 以beta-tubulin基因为选择标记的淡紫紫孢菌遗传转化. 林业科学研究, 2023, 36(4): 12-19. doi: 10.12403/j.1001-1498.20230056
    [18] 王海林杨文云高成杰李昆熊晖杨发成 . 不同产脂量云南松树脂道解剖学比较研究. 林业科学研究, 2015, 28(3): 352-357.
    [19] 李斌顾万春夏良放李锡泉干少雄 . 鹅掌楸种源遗传变异和选择评价. 林业科学研究, 2001, 14(3): 237-243.
    [20] 顾万春王全元张英脱周之和刘德安 . 刺槐次生种源遗传差异及其选择评价. 林业科学研究, 1990, 3(1): 70-75.
  • 加载中
计量
  • 文章访问数:  3725
  • HTML全文浏览量:  188
  • PDF下载量:  2030
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-02-20

松树分子标记辅助育种研究进展

  • 1. 华南农业大学林学院, 广东广州 510642
基金项目:  广东省科技攻关项目(C20303, 2003C201015) ,国家“十五”科技攻关子课题(2002BA515B0103)

摘要: 松树是世界上森林生态系统和人工林的重要树种,松树的遗传改良开展早,进展快,成效大。分子标记技术为缩短育种周期,提高育种效率提供了有力的工具。本文回顾了世界上松树分子标记遗传图谱构建、比较遗传作图、数量性状位点定位和标记辅助选择的研究进展。已经构建遗传连锁图的林木有13个属,近40个树种,其中松树占40%,而大多数松树遗传图谱仍然是不完整的,不能覆盖全基因组;比较遗传作图显示松属树种具有高度的遗传保守性;数量性状位点(QTL)定位表明,大多数性状的遗传基础存在着主效基因,为开展分子标记辅助选择提供了良好的基础。杂种松部分重要性状的遗传控制中存在着树种效应,对标记辅助选择和育种策略的制订具有指导意义。

English Abstract

参考文献 (89)

目录

    /

    返回文章
    返回