• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采伐对大兴安岭落叶松-苔草沼泽土壤有机碳储量的影响

卢慧翠 牟长城 王彪 包旭 崔巍

引用本文:
Citation:

采伐对大兴安岭落叶松-苔草沼泽土壤有机碳储量的影响

  • 基金项目:

    国家"十二五"农村领域科技计划课题森林湿地生态系统功能恢复及优化技术研究与示范(2011BAD08B02-04)

  • 中图分类号: S714

Effects of Harvesting on Soil Organic Carbon Storage of Boreal Larix gmelinii-Carex schmidtii Wetlands in Daxing'anling

  • CLC number: S714

  • 摘要: 对比分析了大兴安岭不同采伐强度(未采伐-对照、轻度择伐-25%、中度择伐-35%、强度择伐-50%)下落叶松-苔草沼泽土壤密度、土壤有机碳含量与土壤有机碳储量的变化,揭示了采伐干扰对森林湿地土壤有机碳储量的影响规律。结果表明:①中度择伐与强度择伐显著提高了其土壤密度,轻度择伐则对土壤密度无显著影响;②轻度择伐显著提高了其表层和深层土壤的有机碳含量,中度择伐与强度择伐显著降低了其各土壤层和中上部土壤层的有机碳含量;③轻度择伐显著提高了其深层土壤有机碳储量,中度择伐和强度择伐则分别显著降低了中下部和中部土壤层的有机碳储量;④轻度择伐样地土壤有机碳储量较对照提高了16.2%(P>0.05),中度择伐和强度择伐样地土壤有机碳储量分别较对照降低了48.5%和30.1%(P<0.05)。
  • [1]

    Houghton J T, Maccarthy J J, Metz B, et al. Climate Change 2001: Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Impacts, Adaption, and Vulnerability[M]. Cambridge: Cambridge University Press, 2001
    [2]

    Maltby E, Immirzi P. Carbon dynamics in peatlands and other wetland soils regional and global perspectives[J]. Chemosphere, 1993, 27 (6): 999-1023
    [3]

    Alongi D M, Trott L A, Pfitzner J. Deposition, mineralization, and storage of carbon and nitrogen in sediments of the far northern and northern Great Barrier Reef shelf[J]. Continental Shelf Research, 2007, 27(20): 2595-2622
    [4]

    Whalen S C. Biogeochemistry of methane exchange between natural wetlands and the atmosphere[J]. Environmental Engineering Science, 2005, 22(1): 73-94
    [5]

    Carroll P, Crill P. Carbon balance of a temperate poor fen[J]. Global Biogeochemical Cycles, 1997, 11(3): 349-356
    [6]

    Wagner G H, Wolf D C. Carbon transformations and soil organic matter formation. Principles and Applications of Soil Microbiology[M]. Prentice-Hall, Upper Saddle River, NJ, 1999
    [7]

    Bridgham S D, Megonigal J P, Keller J K, et al. The carbon balance of North American wetlands[J]. Wetlands, 2006, 26(4): 889-916
    [8]

    Kaunisto S. Peatland forestry in Finland: problems and possibilities from the nutritional point of view. Northern forested wetlands: Ecology and management[M]. Boca Raton: CRC Press, 1997
    [9]

    Trettin C C, Gale M R, Jurgensen M F, et al. Carbon storage response to harvesting and site preparation in a forested mire in northern Michigan, USA[J]. Suo,1992, 43(4-5): 281-284
    [10]

    Trettin C C, Jurgensen M F, Gale M R, et al. Recovery of carbon and nutrient pools in a northern forested wetland 11 years after harvesting and site preparation[J]. Forest Ecology and Management, 2011, 262(9): 1826-1833
    [11]

    Laiho R, Sanchez F, Tiarks A, et al. Impacts of intensive forestry on early rotation trends in site carbon pools in the southeastern US[J]. Forest Ecology and Management, 2003, 174(1-3): 177-189
    [12] 牟长城,吴云霞,李婉姝,等. 采伐对小兴安岭落叶松-泥炭藓沼泽温室气体排放的影响[J].应用生态学报,2010,21(2):287-293

    [13] 孙晓新,牟长城,宋长春,等. 采伐对小兴安岭森林沼泽甲烷通量的影响[J]. 土壤通报,2011,42(1):190-194

    [14]

    Carter M R. Soil Sampling and Methods of Analysis[M]. Boca Raton: CRC Press, 1993
    [15] 杨金艳,王传宽. 东北东部森林生态系统土壤碳贮量和碳通量[J]. 生态学报,2005,25 (11):83-90

    [16]

    Martiarena R A, Frangi J L, Pinazo M A, et al. Effect of thinning and harvest type on storage and losses of phosphorous in Pinus taeda L. Plantations in Subtropical Argentina[J]. International Journal of Forestry Research, 2011, 76:15-32
    [17]

    Fisher R F, Binkley D, Pritchett W L. Ecology and Management of Forest Soils[M]. New York: John Wiley & Sons, Inc, 2000
    [18]

    Garten C T, Post W M, Hanson P J, et al. Forest soil carbon inventories and dynamics along an elevation gradient in the southern Appalachian Mountains[J]. Biogeochemistry, 1999, 45(2): 115-145
    [19]

    Bouwman L A, Arts W. Effects of soil compaction on the relationships between nematodes, grass production and soil physical properties[J]. Applied Soil Ecology, 2000, 14(3): 213-222
    [20]

    Johnson D W. Effects of forest management on soil carbon storage[J]. Water, Air, & Soil Pollution, 1992, 64(1): 83-120
    [21]

    Trettin C C. Silvicultural effects on functional processes of a boreal wetland [D]. Raleigh: North Carolina State University, 1992
    [22]

    Yanai R D, Currie W S, Goodale C L. Soil carbon dynamics after forest harvest: an ecosystem paradigm reconsidered[J]. Ecosystems, 2003, 6(3): 197-212
    [23]

    Ryan D F, Huntington T G, Wayne Martin C. Redistribution of soil nitrogen, carbon and organic matter by mechanical disturbance during whole-tree harvesting in northern hardwoods[J]. Forest Ecology and Management, 1992, 49(1-2): 87-99
    [24]

    Hendrick R L, Pregitzer K S. Temporal and depth-related patterns of fine root dynamics in northern hardwood forests[J]. Journal of Ecology, 1996, 84(2): 167-176
    [25]

    Mclaughlin J W. Carbon assessment in Boreal Wetlands of Ontario[M]. Canada: Ontario Forest Research Institute, 2004
    [26]

    Jiang H, Apps M J, Peng C, et al. Modelling the influence of harvesting on Chinese boreal forest carbon dynamics[J]. Forest Ecology and Management, 2002, 169(1-2): 65-82
    [27]

    Powers R F, Frazer D W, Mccoll J G. Soil nitrogen mineralization in a clearcutting chronosequence in a northern California conifer forest[J]. Soil Science Society of America Journal, 1990, 54(4): 1145-1152
    [28]

    De Neve S, Hofman G. Influence of soil compaction on carbon and nitrogen mineralization of soil organic matter and crop residues[J]. Biology and Fertility of Soils, 2000, 30(5-6): 544-549
    [29]

    Nilsen P, Strand L T. Thinning intensity effects on carbon and nitrogen stores and fluxes in a Norway spruce (Picea abies (L.) Karst.) stand after 33 years[J]. Forest Ecology and Management, 2008, 256(3): 201-208
  • [1] 贾呈鑫卓李帅锋苏建荣 . 地形因子对思茅松人工林土壤有机碳储量的影响. 林业科学研究, 2016, 29(3): 424-429.
    [2] . 大兴安岭兴安落叶松天然林林隙地被物变化特征研究. 林业科学研究, 2009, 22(2): -.
    [3] 李正才徐德应傅懋毅孙雪忠奚金荣 . 北亚热带土地利用变化对土壤有机碳垂直分布特征及储量的影响. 林业科学研究, 2007, 20(6): 744-749.
    [4] 李正才傅懋毅徐德应孙雪忠奚金荣 . 农田营造早竹林后土壤有机碳的变化. 林业科学研究, 2006, 19(6): 773-777.
    [5] 赵志霞李正才周君刚程彩芳赵睿宇孙娇娇 . 火烧对北亚热带杉木林土壤有机碳的影响. 林业科学研究, 2016, 29(2): 301-305.
    [6] . 大兴安岭雷击火时空分布及预报模型. 林业科学研究, 2009, 22(1): -.
    [7] 董灵波刘兆刚李凤日蒋蕾 . 大兴安岭主要森林类型林分空间结构及最优树种组成. 林业科学研究, 2014, 27(6): 734-740.
    [8] 张恒金森邸雪颖 . 大兴安岭森林凋落物含水率的季节动态与预测. 林业科学研究, 2014, 27(5): 683-688.
    [9] 张晓玉田晓瑞 . 厄尔尼诺/拉尼娜对大兴安岭森林火险天气的影响. 林业科学研究, 2018, 31(6): 55-62. doi: 10.13275/j.cnki.lykxyj.2018.06.008
    [10] 吴波石培礼井学辉李晓松 . 大兴安岭东部林区植被蓄水潜力与价值的评估. 林业科学研究, 2006, 19(6): 706-712.
    [11] 韩大校王千雪王烁纪昊男柴林琦张吉利 . 地形和森林植被因子对落叶松毛虫越冬代发生及数量的影响. 林业科学研究, 2023, 36(2): 144-152. doi: 10.12403/j.1001-1498.20220187
    [12] 林英华卢萍赵鲁安谭飞徐演鹏贾旭东李慧仁刘学爽韦昌雷王立中 . 大兴安岭森林沼泽类型与火干扰对土壤微生物群落影响. 林业科学研究, 2016, 29(1): 93-102.
    [13] 李帅锋苏建荣刘万德郎学东黄小波贾呈鑫卓童清唐红燕 . 思茅松人工林土壤有机碳和氮储量变化. 林业科学研究, 2015, 28(6): 810-817.
    [14] 宗学政田晓瑞田恒陈方 . 计划火烧对区域森林燃烧性的影响. 林业科学研究, 2020, 33(3): 54-62. doi: 10.13275/j.cnki.lykxyj.2020.03.007
    [15] 吕沅杭伊利启王儒林刘兆刚董灵波 . 基于空间结构参数的大兴安岭天然落叶松单木直径生长模型. 林业科学研究, 2021, 34(2): 81-91. doi: 10.13275/j.cnki.lykxyj.2021.02.009
    [16] 刘镜婷姜立春 . 大兴安岭不同区域落叶松相容性材积方程及异方差研究. 林业科学研究, 2016, 29(3): 317-323.
    [17] 王建宇胡海清邢亚娟闫国永王庆贵 . 大兴安岭兴安落叶松林树木生物量对氮沉降的响应. 林业科学研究, 2018, 31(3): 88-94. doi: 10.13275/j.cnki.lykxyj.2018.03.012
    [18] 何潇李海奎曹磊徐胜林刘晓彤 . 退化森林生态系统中林分碳储量的驱动因素—以内蒙古大兴安岭为例. 林业科学研究, 2020, 33(2): 69-76. doi: 10.13275/j.cnki.lykxyj.2020.02.009
    [19] 王冰张金钰孟勐张秋良 . 基于EVI的大兴安岭火烧迹地植被恢复特征研究. 林业科学研究, 2021, 34(2): 32-41. doi: 10.13275/j.cnki.lykxyj.2021.02.004
    [20] 骆土寿陈步峰陈永富杨彦臣杨秀森李大江 . 海南岛霸王岭热带山地雨林采伐经营初期土壤碳氮储量. 林业科学研究, 2000, 13(2): 123-128.
  • 加载中
计量
  • 文章访问数:  3223
  • HTML全文浏览量:  198
  • PDF下载量:  1374
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-28

采伐对大兴安岭落叶松-苔草沼泽土壤有机碳储量的影响

  • 1. 东北林业大学生态研究中心, 哈尔滨 150040
基金项目:  国家"十二五"农村领域科技计划课题森林湿地生态系统功能恢复及优化技术研究与示范(2011BAD08B02-04)

摘要: 对比分析了大兴安岭不同采伐强度(未采伐-对照、轻度择伐-25%、中度择伐-35%、强度择伐-50%)下落叶松-苔草沼泽土壤密度、土壤有机碳含量与土壤有机碳储量的变化,揭示了采伐干扰对森林湿地土壤有机碳储量的影响规律。结果表明:①中度择伐与强度择伐显著提高了其土壤密度,轻度择伐则对土壤密度无显著影响;②轻度择伐显著提高了其表层和深层土壤的有机碳含量,中度择伐与强度择伐显著降低了其各土壤层和中上部土壤层的有机碳含量;③轻度择伐显著提高了其深层土壤有机碳储量,中度择伐和强度择伐则分别显著降低了中下部和中部土壤层的有机碳储量;④轻度择伐样地土壤有机碳储量较对照提高了16.2%(P>0.05),中度择伐和强度择伐样地土壤有机碳储量分别较对照降低了48.5%和30.1%(P<0.05)。

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回