• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

云南野生黄牡丹PlbHLH3转录因子基因的克隆与表达

史倩倩 周琳 李奎 王雁

引用本文:
Citation:

云南野生黄牡丹PlbHLH3转录因子基因的克隆与表达

  • 基金项目:

    "863"计划(SQ2010AA1000687008)、国家自然科学基金项目(31201654)

  • 中图分类号: S685.11

Isolation and Expression of PlbHLH3 Transcription Factor Genes in Paeonia lutea

  • CLC number: S685.11

  • 摘要: 以云南野生黄牡丹为试材,基于已构建的花瓣转录组数据库,筛选到了24个与花色素苷合成相关的bHLH转录因子蛋白同源性高的Unigene序列,命名为PlbHLH1~24。通过开放阅读框(ORF)的氨基酸序列比较和系统进化树分析,发现PlbHLH3可能参与调控花色素苷合成,其ORF包含一个 2 040 bp的开放阅读框,编码一个679个氨基酸的蛋白;其氨基酸序列与葡萄VvMYC1和苹果MdbHLH3的亲缘关系最近,相似性达60%以上。相对荧光定量PCR分析表明,PlbHLH3在黄牡丹和紫牡丹的不同组织中均有表达,在两者的花药,心皮和花瓣中的表达显著高于在萼片和叶片中的表达;PlbHLH3在紫牡丹的硬蕾期高丰度表达,而在黄牡丹的硬蕾期表达量最低,在其他4个时期的表达量显著或极显著高于在硬蕾期的表达量。本研究推测PlbHLH3参与黄牡丹花色素苷合成的调控作用,为今后深入探讨黄牡丹花色形成机制奠定理论基础。
  • [1] 黄金霞,王亮生,李晓梅,等.花色变异的分子基础与进化模式研究进展[J].植物学通报,2006, 23(4): 321-333.

    [2]

    Holton T A, Cornish E C. Genetics and biochemistry of anthocyanin biosynthesis[J]. Plant Cell, 1995, 7(7): 1071-1083.
    [3]

    Ramsay N A, Glover B J. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity[J]. Trends Plant Sci, 2005,10(2): 63-70.
    [4] 张全琪,朱家红,倪燕妹,等.植物bHLH转录因子的结构特点及其生物学功能[J].热带亚热带植物学报, 2000,19(1):84-90.

    [5]

    Nesi N, Debeaujon I, Jond C, et al. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques[J]. Plant Cell, 2000, 12 (10): 1863-1878.
    [6]

    Heisler MG, Atkinson A, Bylstra YH, et al. SPATULA, a gene that controls development of carpel margin tissues in Arabidopsis, encodes a bHLH protein[J]. Development,2001,128:1089-1098.
    [7]

    Sorensen A M, Kröber S, Unte U S, et al. The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor[J]. Plant J,2003, 33(2): 413-423.
    [8]

    Leivar P, Monte E, Oka Y, et al. Multiple phytochrome-interacting bHLH transcription factors repress premature seedling photomorphogenesis in darkness[J]. Curr Biol,2008, 18 (23): 1815-1823.
    [9]

    Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling[J]. Plant Cell, 2003,15 (1): 63-78.
    [10]

    Lorenzo O, Chico JM, Sánchez-Serrano JJ, et al. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis[J]. Plant Cell, 2004,16 (7): 1938-1950.
    [11]

    Li H, Sun J, Xu Y, et al. The bHLH-type transcription factor AtAIB positively regulates ABA response in Arabidopsis. Plant Mol Biol.2007, 65 (5): 655-665.
    [12]

    Bou-Torrent J, Roig-Villanova I, Galstyan A, et al. PAR1 and PAR2 integrate shade and hormone transcriptional networks[J]. Plant Signal Behav. 2008, 3 (7): 453-454.
    [13]

    Rampey R A, Woodward AW, et al. An Arabidopsis basic helix-loop-helix leucine zipper protein modulates metal homeostasis and auxin conjugate responsiveness[J]. Genetics. 2006,174 (4): 1841-1857.
    [14]

    Long TA, Tsukagoshi H, Busch W, et al. The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots[J]. Plant Cell,2010,22 (7): 2219-2236.
    [15]

    Ludwig SR, Habera LF, Dellaporta SL, et al. Lc, a member of the maize R gene family responsible for tissuespecific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region[J]. Proc Natl Acad Sci USA, 1998,86 (18): 7092-7096.
    [16]

    ChandlerV L, Radieella J P, Robbins T P, et al. Two regulatory genes of the maize anthocyanin pathway are homologous:Isolation of B utilizing R genomic sequenees[J]. Plant Cell,1989,1(12):1175-1183.
    [17]

    Goff S A, Cone K C, Chandler V L. Functional analysis of the transcriptional activator encoded by the maize B gene: evidence for a direct functional interaction between two classes of regulatory proteins[J]. Genes Dev., 1992,6 (5): 864-875.
    [18]

    Goodrich J, Carpenter R and Coen E S. 1992. A common gene regulates pigmentation patten in diverse plant species. Cell, 68(5):955-964.
    [19]

    Elomaa P, Mehto M, Kotilainen M, et al. A bHLH transcription factor mediates organ, region and flower type specific signals on dihydrofl avonol-4-reductase (dfr) gene expression in the inflorescence of Gerbera hybrida (Asteraceae). Plant J., 1998,16(1):93-99.
    [20]

    Sakamoto W, Ohmori T, Kageyama K,et al. The purple leaf (Pl) locus of rice:The pl allele has a complex organization and includes two Genes encoding basie helix-loop-helix proteins involved in anthocyanin biosynthesis. Plant Cell Physiol, 2001, 42(9):982-991.
    [21]

    Park K, Ishikawa N, Morita Y, et al. A bHLH regulatory gene in the common morning glory, Ipomoea Purpurea, controls anthocyanin biosynthesis in flowers, proanthocyanidin and phytolnelanin pigmentation in seeds, and seed trichome formation.The Plant Joumal, 2007b, 49(4):641-654
    [22]

    Nakatsuka T, Haruta K S, Pitaksutheepong C, et al. Identification and characterization of R2R3-MYB and bHLH transcription factors regulating anthocyanin biosynthesis in gentian flowers[J]. Plant Cell Physiol. 2008, 49: 1818-1829.
    [23]

    Espley R V, Hellens R P, Putterill J, et al. Red colouration in apple fruit due to the activity of the MYB transcription factor, MdMYB10[J]. Plant J.,2007,49:414-427.
    [24]

    Franken P., Schrell S., Peterson P A., et al. Molecular analysis of protein domain function encoded by the myb-homologous maize genes CI, Zm1 and Zm 38[J]. The Plant Journal,1994,6 (1):21-30.
    [25]

    Spelt C, Quattrocchio F, Mol JNM, et al.Anthocyanin1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes[J]. Plant Cell, 2000,12 (9): 1619-1631.
    [26]

    Yamagishi M, Shimoyamada Y, Nakatsuka T, et al. Two R2R3-MYB genes, homologs of petunia AN2, regulate anthocyanin biosyntheses in flower tepals, tepal spots and leaves of Asiatic hybrid lily[J]. Plant Cell Physiol, 2010, 51:463-474.
    [27]

    Wang Kui-lin, Bolitho, K., Grafton, K., et al. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae[J]. BMC Plant Biology, 2010,10: 50.
    [28] 王 勇,陈克平,姚 勤. bHLH转录因子家族研究进展[J].遗传,2008, 30 (7): 821-830.

    [29] 方文培. 中国芍药属植物的研究[J]. 植物分类学报, 1958, 7(4): 297-323.

    [30] 王莲英. 中国牡丹品种图志[M]. 北京: 中国林业出版社, 1997, 2-7.

    [31] 李嘉珏. 中国牡丹与芍药[M]. 北京: 中国林业出版社, 1999.

    [32] 龚 询.滇牡丹复合群体分类研究[J]. 7 昆明植物研究所,1990.

    [33] 王志芳, 王 雁, 岳 桦. 珍稀资源: 黄牡丹[J].中国城市林业,2007, 5(2): 59- 60.

    [34]

    Zhou L, Wang Y, Ren L, et al. Overexpression of Pl-CHI1, a homologue of the chalcone isomerase gene from tree peony (Paeonia suffruticosa), reduces the intensity of flower pigmentation in transgenic tobacco[J]. Plant Cell, Tissue and Organ Culture, 2014, 16 (3): 285-295.
    [35]

    Zhou L, Wang Y, Peng Z. Molecular characterization and expression analysis of chalcone synthase gene during flower development in tree peony (Paeonia suffruticosa)[J]. Afr J Biotechnol, 2011, 10(8):1275-1284.
    [36]

    Fan C, Purugganan M D, Thomas D T, et al. Heterogeneous evolution of the Myc-like Anthocyanin regulatory gene and its phylogenetic utility in Cornus L.(Cornaceae)[J]. Mol Phylogenet Evol,2004, 33(3): 580-594.
    [37]

    Jiang Y, Deyholos M K. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes[J]. BMC Plant Biol, 2006, 6(1): 25.
    [38]

    Jiang Y, Yang B, Deyholos M K. Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress[J]. Mol Genet Genomics, 2009, 282(5): 503-516.
    [39]

    Li XX,Duan XP,Jiang HX, et al. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis[J]. Plant Physiology, 2006, 141(4):1167-1184.
    [40]

    Hichri I, Heppel S C, Pillet J, et al. The basic helix-loop-helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine[J]. Mol Plant, 2010, 3(3): 509-523.
    [41]

    Xie X B, Li S, Zhang R F, et al. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples[J]. Plant Cell Environ, 2012, 35(11): 1884-1897.
    [42]

    Quattrocchio F, Wing J F, Va K, et al. Analysis of bHLH and MYB domain proteins: species-specific regulatory differences are caused by divergent evolution of target anthocyanin genes[J]. Plant J, 1998,13(4): 475-488.
    [43]

    Martin C, Prescott A, Mackay S, et al. Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. Plant J.1991,1 (1): 37-49.
    [44]

    Quattrocchio F,Wing J F,Leppen H,et al. Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes[J]. The Plant Cell, 1993, 5 (11): 1497-1512.
    [45]

    Quattrocchio F, Baudry A, Lepiniec L, et al. The regulation of flavonoid biosynthesis. In: Grotewold E(ed) The science of flavonoids[J]. New York, Springer, pp.2006: 97-122.
    [46]

    de Vetten N, Quattrocchio F, Mol J, et al. The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals[J]. Genes & Development, 1997,11:1422-1434.
    [47]

    Elomaa P, Mehto M, Kotilainen M, et al. A bHLH transcription factor mediates organ, region and flower type specific signals on dihydrofl avonol-4-reductase (dfr) gene expression in the inflorescence of Gerbera hybrida (Asteraceae). Plant J., 1998,16(1):93-99.
    [48]

    Li C, Du H, Wang L, et al. Flavonoid composition and antioxidant activity of tree peony (Paeonia section Moutan) yellow flowers[J]. J Agric Food Chem, 2009, 57: 8496-8503.
    [49] 周 琳,王 雁, 律春燕,等.云南野生黄牡丹花色素成分的鉴定[J].东北林业大学学报,2011, 39(8):52-54.

    [50]

    Wang LS, Hashimoto F, Shiraishi A, et al. Phenetics in tree peony species from China by flower pigment cluster analysis[J].J Plant Res, 2001a, 114: 213-221.
    [51]

    Wang LS, Shiraishi A, Hashimoto F, et al. Analysis of petal anthocyanins to investigate flower coloration of Zhongyuan (Chinese) and Daikon Island (Japanese) tree peony cultivars[J]. J Plant Res,2001b, 114:33-43.
    [52] 韩科厅,赵 莉,唐杏姣, 等.菊花花色素苷合成关键基因表达与花色表型的关系[J].园艺学报, 2012,39 (3):516-524.

  • [1] 史倩倩周琳李奎王雁 . 植物花色素合成的转录调控研究进展. 林业科学研究, 2015, 28(4): 570-576.
    [2] 单雪萌王思宁朱成磊高志民 . 毛竹 PeCPD 基因克隆与表达分析. 林业科学研究, 2019, 32(5): 58-66. doi: 10.13275/j.cnki.lykxyj.2019.05.008
    [3] 王江英范正琪殷恒福李辛雷吴斌李纪元 . 杜鹃红山茶CaAPX基因的克隆、表达及功能分析. 林业科学研究, 2016, 29(4): 471-479.
    [4] 安静万友名马宏刘雄芳张秀姣曹毓蓉李正红 . 地涌金莲MlCYP734A6基因的克隆与表达分析. 林业科学研究, 2021, 34(3): 37-45. doi: 10.13275/j.cnki.lykxyj.2021.03.004
    [5] 范艳如兰倩韩素英齐力旺张立峰 . 日本落叶松LaSPL2LaSPL3在体细胞胚发育中的表达分析. 林业科学研究, 2021, 34(5): 79-87. doi: 10.13275/j.cnki.lykxyj.2021.005.009
    [6] 姜波高彩球王玉成于丽丽杨传平 . 刚毛柽柳富含甘氨酸RNA结合蛋白ThGRP1基因克隆与表达分析. 林业科学研究, 2011, 24(2): 256-262.
    [7] 余义勋张俊卫孙振元包满珠 . 香石竹ACC氧化酶基因的克隆与植物表达载体构建. 林业科学研究, 2002, 15(3): 256-260.
    [8] 宣磊王芝权殷云龙华建峰 . 中山杉406ThSHR3基因的克隆、表达及蛋白互作研究. 林业科学研究, 2021, 34(4): 32-39. doi: 10.13275/j.cnki.lykxyj.2021.04.004
    [9] 刘英冠吴庆珂何关顺汪阳东杨素素陈益存高暝 . 山鸡椒1-脱氧木酮糖-5-磷酸还原异构酶 DXR基因的克隆和SNP分析. 林业科学研究, 2015, 28(1): 93-100.
    [10] 易敏张守攻谢允慧孙晓梅 . 日本落叶松纤维素合酶基因片段的克隆及单核苷酸多态性分析. 林业科学研究, 2015, 28(3): 303-310.
    [11] 易敏张守攻谢允慧孙晓梅 . 日本落叶松咖啡酸-O-甲基转移酶基因 LkCOMT的克隆及单核苷酸多态性分析. 林业科学研究, 2013, 26(S1): 52-59.
    [12] 王菁李爱王春国宋文芹陈成彬 . 日本落叶松 UDPGDH基因的cDNA克隆和表达分析. 林业科学研究, 2013, 26(S1): 76-81.
    [13] 黄国文管天球赵雨云陈莫林刘宏辉 . 油茶转录因子基因CoSOC1-like的克隆和表达分析. 林业科学研究, 2022, 35(2): 129-139. doi: 10.13275/j.cnki.lykxyj.2022.02.015
    [14] 李龙张立峰齐力旺韩素英 . 日本落叶松体细胞胚胎发生相关基因LaSERK1的克隆与表达分析. 林业科学研究, 2013, 26(6): 673-680.
    [15] 张婷丁贵杰文晓鹏 . 马尾松紫色酸性磷酸酶基因PmPAP1的克隆与表达模式分析. 林业科学研究, 2016, 29(6): 797-806.
    [16] 张恺恺杨立莹丰美静张林凤陈段芬邱德有杨艳芳 . 曼地亚红豆杉NAC基因家族鉴定及表达分析. 林业科学研究, 2022, 35(2): 97-103. doi: 10.13275/j.cnki.lykxyj.2022.02.011
    [17] 章晶晶郭英华赵树堂卢孟柱 . 杨树PtRRI基因的组织特异性表达模式分析. 林业科学研究, 2018, 31(2): 34-40. doi: 10.13275/j.cnki.lykxyj.2018.02.005
    [18] 赵岩秋周厚君魏凯丽江成宋学勤卢孟柱 . 杨树中Ⅰ类KNOX基因结构、表达与功能分析. 林业科学研究, 2018, 31(4): 118-125. doi: 10.13275/j.cnki.lykxyj.2018.04.017
    [19] 朱建峰李万峰杨文华韩素英齐力旺 . 中间锦鸡儿生长发育过程中5个miRNAs及其靶基因的表达模式分析. 林业科学研究, 2013, 26(S1): 45-51.
    [20] 李奎王雁郑宝强郭欣 . 黄牡丹研究现状与展望. 林业科学研究, 2014, 27(2): 259-264.
  • 加载中
计量
  • 文章访问数:  2877
  • HTML全文浏览量:  194
  • PDF下载量:  1048
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-29

云南野生黄牡丹PlbHLH3转录因子基因的克隆与表达

  • 1. 中国林业科学研究院林业研究所, 国家林业局林木培育重点实验室, 北京 100091
基金项目:  "863"计划(SQ2010AA1000687008)、国家自然科学基金项目(31201654)

摘要: 以云南野生黄牡丹为试材,基于已构建的花瓣转录组数据库,筛选到了24个与花色素苷合成相关的bHLH转录因子蛋白同源性高的Unigene序列,命名为PlbHLH1~24。通过开放阅读框(ORF)的氨基酸序列比较和系统进化树分析,发现PlbHLH3可能参与调控花色素苷合成,其ORF包含一个 2 040 bp的开放阅读框,编码一个679个氨基酸的蛋白;其氨基酸序列与葡萄VvMYC1和苹果MdbHLH3的亲缘关系最近,相似性达60%以上。相对荧光定量PCR分析表明,PlbHLH3在黄牡丹和紫牡丹的不同组织中均有表达,在两者的花药,心皮和花瓣中的表达显著高于在萼片和叶片中的表达;PlbHLH3在紫牡丹的硬蕾期高丰度表达,而在黄牡丹的硬蕾期表达量最低,在其他4个时期的表达量显著或极显著高于在硬蕾期的表达量。本研究推测PlbHLH3参与黄牡丹花色素苷合成的调控作用,为今后深入探讨黄牡丹花色形成机制奠定理论基础。

English Abstract

参考文献 (52)

目录

    /

    返回文章
    返回