• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

杨树转基因研究进展及展望

丁莉萍 王宏芝 魏建华

引用本文:
Citation:

杨树转基因研究进展及展望

  • 基金项目:

    国家"863"计划"杨树抗虫关键基因的鉴定及分子育种技术研究"项目(2013AA102701-6)、北京市农林科学院青年科研基金项目(QNJJ201415)

  • 中图分类号: S792.11

Progress and Prospect of Research in Transgenic Poplar

  • CLC number: S792.11

  • 摘要: 杨树是重要的栽培树种,也是研究林木基因工程的重要模式植物。杨树转基因研究可以打破种属限制,具有高效性和专一性的特点,是对杨树进行遗传改良的重要手段。为了更好的进行该方面的工作,本文介绍了杨树转基因涉及到的抗虫、抗除草剂、木材材性改良、抗逆、抗病、激素调控、开花调控和植物修复等应用领域的研究进展及现状,分析了影响杨树农杆菌转化效率的主要因素,并探讨了杨树转基因研究存在的问题及发展方向,希望能为后期从事林木基因工程研究的科研工作者提供依据。
  • [1] 苏晓华, 张绮纹, 郑先武, 等. 美洲黑杨(Populus deltoids Marsh)×青杨(P.cathayana Rehd.)分子连锁图谱的构建[J]. 林业科学,1998,34(6):29-37.

    [2]

    Parsons T J, Sinkar V P, Stettler R F, et al. Transformation of poplar by Agrobacterium tumefaciens[J]. Bio/Technology, 1986, 4: 533-536.
    [3]

    Bradshwa H, Stettler R. Molecular genetics of growth and development in Populus[J]. Hereditas, 1940, 26: 367-378.
    [4] 田颖川, 李太元, 莽克强, 等. 抗虫转基因欧州黑杨的培育[J]. 生物工程学报,1993,9(4):291-297.

    [5] 田颖川, 郑均宝, 虞红梅, 等. 转双抗虫基因杂种741毛白杨的研究[J]. 植物学报,2000,42(3):263-268.

    [6] 王学聘, 韩一凡, 戴莲韵, 等. 抗虫转基因欧美杨的培育[J]. 林业科学,1997,33(1): 69-74.

    [7] 饶红宇, 陈 英, 黄敏仁, 等. 杨树NL-80106转Bt基因植株的获得及抗虫性[J]. 植物资源与环境学报,2000,9(2):1-5.

    [8] 李科友, 樊军锋, 赵 忠, 等. 转双价抗虫基因毛白杨无性系85号抗虫性研究[J]. 西北植物学报,2007,27(8):1537-1543.

    [9]

    Zhang B, Chen M, Zhang X, et al. Laboratory and field evaluation of the transgenic Populus alba × Populus glandulosa expressing double coleopteran-resistance genes[J]. Tree Physiology, 2011, 31: 567-573.
    [10] 张 雁, 郭同斌, 潘惠新, 等. 转Bt基因南林895杨抗虫性及对土壤微生物影响分析[J]. 林业科学研究,2012,25(3):346-350.

    [11]

    Genissel A, Leple J C, Millet N, et al. High tolerance against Chrysomela tremulae of transgenic poplar plants expressing a synthetic cry3Aa gene from Bacillus thuringiensis ssp tenebrionis[J]. Molecular Breeding, 2003, 11: 103-110.
    [12]

    Klocko A L, Meilan R, James R R, et al. Bt-Cry3Aa transgene expression reduces insect damage and improves growth in field-grown hybrid poplar[J]. Can J For Res, 2014, 44: 28-35.
    [13]

    Leple J C, Bottino B M, Augustin S, et al. Toxicity to Chrysomela tremulae (Coleoptera:Chrysomelidae) of transgenic poplars expressing a cysteine proteinase inhibitor[J]. Molecular Breeding, 1995, 1: 319-328.
    [14] 伍宁丰, 孙 芹, 姚 斌, 等. 抗虫的转AaIT基因杨树的获得[J]. 生物工程学报,2000, 16(2):129-133.

    [15]

    Fillatti J J, Kiser J, Rose R, et al. Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector[J]. Nature Biotechnol, 1987, 5: 726-730.
    [16]

    DeBlock M. Factors influencing the tissue culture and the Agrobacterium tumefaciens-mediated transformation of hybrid aspen and poplar clones[J]. Plant Physiol, 1990, 93: 1110-1116.
    [17]

    Brasileiro A, Tourneur C, Leple J C, et al. Expression of the mutant Arabidopsis thaliana acetolactate synthase gene confers chlorsulfuron resistance to transgenic poplar plants[J]. Trans Research, 1992, 1: 133-141.
    [18]

    Gullner G, Komives T, Rennenberg H. Enhanced tolerance of transgenic poplar plants overexpressing gamma-glutamylcysteine synthetase towards chloroacetanilide herbicides[J]. J Exp Bot, 2001, 52: 971-979.
    [19]

    Meilan R, Han K, Ma C, et al. The CP4 transgene provides high levels of tolerance to Roundup herbicide in field-grown hybrid poplars[J]. Can J Forest Research, 2002, 32: 967-976.
    [20]

    Li J, Meilan R, Ma C, et al. Stability of herbicide resistance over 8 years of coppice in field-grown, genetically engineered poplars[J]. Western Journal of Applied Forestry, 2008, 23(2): 89-93.
    [21]

    Sewalt VJH, Ni W T, Blount JW, et al. Reduced lignin content and altered lignin composition in transgenic tobacco downregulated in expression of L-phenylalanine ammonia-lyase or cinnamate 4-hydroxylase[J]. Plant Physiol, 1997, 115: 41-50.
    [22]

    Li L, Zhou Y, Cheng X, et al. Combinatorial modification of multiple lignin traits in trees through multigene cotransformation[J]. Proc Natl Acad Sci USA, 2003, 100: 4939-4944.
    [23]

    Meyermans H, Morreel K, Lapierre C. Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down-egulation of caffeoyl-coenzyme A O-methyltransferase, an enzyme involved in lignin biosynthesis[J]. J Biol Chem, 2000, 275: 36899-36909.
    [24]

    Franke R, McMichael CM, Meyer K, et al. Modified lignin in tobacco and poplar plants over-expressing the Arabidopsis gene encoding ferulate 5-hydroxylase[J]. Plant J, 2000, 22: 223 -234.
    [25]

    Baucher M, Chabbert B, Pilate G, et al. Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydrogenase in poplar[J]. Plant Physiol, 1996, 112 (4) : 1479-1490.
    [26]

    Zhong R, Morrison III W H, Himmelsbach D S, et al. Essential role of caffeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants[J]. Plant Physiol, 2000, 124: 563-577.
    [27]

    Rouque-Rivera R, Talhelm A F, Johnson D W, et al. Effects of lignin-modified Populus tremuloides on soil organic carbon[J]. Journal of Plant Nutrition and Soil Science, 2011, 174: 818-826.
    [28]

    Thakur A K, Aggarwal G, Sribastaba D K. Genetic modification of lignin biosynthetic pathway in Populus ciliata Wall. via Agrobacterium-mediated antisense CAD gene transfer for quality paper production[J]. Natl Acad Sci Lett, 2012, 35(2): 79-84.
    [29]

    Coleman H D, Canovas F M, Man H, et al. Enhanced expression of glutamine synthetase (GS1a) confers altered fibre and wood chemistry in field grown hybrid poplar (Populus tremula × alba) (717-1B4)[J]. Plant Biotechnology Journal, 2012, 10: 883-889.
    [30]

    Lu S, Li Q, Wei H, et al. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa[J]. Proc Natl Acad Sci USA, 2013, 110: 10848-10853.
    [31]

    Li C, Wang X, Lu W, et al. A poplar R2R3-MYB transcription factor, PtrMYB152, is involved in regulation of lignin biosynthesis during secondary cell wall formation[J]. Plant Cell Tiss Organ Cult, 2014, 119(3): 553-563.
    [32]

    Payyavula R S, Tschaplinski T J, Jawdy S S, et al. Metabolic profiling reveals altered sugar and secondary metabolism in response to UGPase overexpression in Populus[J]. BMC Plant Biol, 2014, 14(1): 265-278.
    [33]

    Ko J H, Kim H T, Hwang I, et al. Tissue-type-specific transcriptome analysis identifies developing xylem-specific promoters in poplar[J]. Plant Biotechnology Journal, 2012, 10: 587-596.
    [34]

    Wang H Z, Xue Y X, Chen YJ, et al. Lignin modification improves the biofuel production potential in transgenic Populus tomentosa[J]. Industrial Crops and Products, 2012, 37: 170-177.
    [35]

    Stout A T, Davis A A, Domec J C, et al. Growth under field conditions affects lignin content and producitivity in transgenic Populus trichocarpa with altered lignin biosynthesis[J]. Biomass and Bioenergy, 2014, 68: 228-239.
    [36] 刘凤华, 郭 岩, 谷冬梅, 等. 转甜菜碱醛脱氢酶基因植物的耐盐性研究[J]. 遗传学报,1997,24(1):54-58.

    [37]

    Li Y, Su X, Zhang B, et al. Expression of jasmonic ethylene responsive factor gene in transgenic poplar tree leads to increased salt tolerance[J]. Tree Physiology, 2009, 29: 273-279.
    [38]

    Du N, Liu X, Li Y, et al. Genetic transformation of Populus tomentosa to improve salt tolerance[J]. Plant Cell Tiss Organ Cult, 2012, 108: 181-189.
    [39]

    Han M S, Noh E W, Han S H. Enhanced drought and salt tolerance by expression of AtGSK1 gene in poplar[J]. Plant Biotechnol Rep, 2013, 7: 39-47.
    [40]

    Tang R J, Yang Y, Yang L, et al. Poplar calcineurin B-like proteins PtCBL10A and PtCBL10B regulate shoot salt tolerance through interaction with PtSOS2 in the vacuolar membrane[J]. Plant, Cell and Environment, 2014, 37: 573-58.
    [41]

    Benedict C, Skinner J S, Meng R, et al. The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp[J]. Plant, Cell Environ, 2006, 29: 1259-1272.
    [42]

    Behnke K, Ehlting B, Teuber M, et al. Transgenic, non-isoprene emitting poplars don't like it hot[J]. Plant J, 2007, 51: 485-499.
    [43] 赵世民, 祖国诚, 刘根齐, 等. 通过农杆菌介导法将兔防御素NP-1基因导入毛白杨(P. tomentosa)[J]. 遗传学报,1999,26(6):711-714.

    [44]

    Liang H, Catranis C M, Maynard C A, et al. Enhanced resistance to the poplar fungal pathogen, Septoria musiva, in hybrid poplar clones transformed with genes encoding antimicrobial peptides[J]. Biotechnol Lett, 2002, 24: 383-389.
    [45] 孟 亮,李红双,金德敏, 等. 转几丁质酶基因黑杨的获得[J]. 生物技术通报,2004,3:48-51.

    [46]

    Huang Y, Liu H, Jia Z, et al. Combined expression of antimicrobial genes (Bbchit1 and LJAMP2) in transgenic poplar enhances resistance to fungal pathogens[J]. Tree Physiology, 2012, 32: 1313-1320.
    [47] 金 慧,栾雨时. 转录因子在植物抗病基因工程中的研究进展[J]. 中国生物工程杂志,2010,30(10):94-99.

    [48]

    Levee V, Major I, Levasseur C, et al. Expression profiling and functional analysis of Populus WRKY23 reveals a regulatory role in defense[J]. New Phytologist, 2009, 184: 48-70.
    [49]

    Tuominen H, Sitbon F, Jacobsson C, et al. Altered growth and wood characteristics in transgenic hybrid Aspen expressing Agrobacterium fumefaciens T-DNA indoleacetic acid-biosynthetic genes[J]. Plant Physiol, 1995, 109: 1179-1189.
    [50]

    Nilsson O, Moritz T, Sundberg B, et al. Expression of the Agrobacterium rhizogenes rolC gene in a deciduous forest tree alters growth and development and leads to stem fasciation[J]. Plant Physiol, 1996, 112(2): 493-502.
    [51]

    Han K M, Dharmawardhana P, Arias R S, et al. Gibberellin-associated cisgenes modify growth, stature and wood properties in Populus[J]. Plant Biotechnology Journal, 2010, 1-17.
    [52]

    Eriksson M E, Israelsson M, Olsson O, et al. Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length[J]. Nat Biotech, 2000, 18: 784-788.
    [53]

    Busov V B, Meilan R, Pearce D W, et al. Activation tagging of a dominant gibberellin catabolism gene (GA 2-oxidase) from Poplar that regulates tree stature[J]. Plant Physiol, 2003, 132: 1283-1291.
    [54]

    Rottmann W H, Meilan R, Sheppard L A, et al. Diverse effects of overexpression of LEAFY and PTLF,a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis[J]. Plant J, 2000, 22: 235-245.
    [55]

    Bohlenius H, Huang T, Charbonnel-Campaa L, et al. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees[J]. Science, 2006, 312: 1040-1043.
    [56]

    Shen L, ChenY, Su X, et al. Two FT orthologs from Populus simonii Carriere induce early flowering in Arabidopsis and poplar trees[J]. Plant Cell Tiss Organ Cult, 2012, 108: 371-379.
    [57]

    Elorriaga E, Meilan R, Ma C, et al. A tapetal ablation transgene induces stable male sterility and slows field growth in Populus[J]. Tree Genetics & Genomes, 2014, 10: 1583-1593.
    [58]

    Doty S L, James C A, Moore A L, et al. Enhanced phytoremediation of volatile environmental pollutants with transgenic trees[J]. Proc Natl Acad Sci USA,2007, 104(43): 16816-16821.
    [59]

    Lyyra S, Meagher RB, Kim T, et al. Coupling two mercury resistance genes in Eastern cottonwood enhances the processing of organomercury[J]. Plant Biotechnol J, 2007, 5: 254-262.
    [60]

    Ivanova L A, Ronzhina D A, Ivanov L A, et al. Over-expression of gsh1 in the cytosol affects the photosynthetic apparatus and improves the performance of transgenic poplars on heavy metal-contaminated soil[J]. Plant Biology, 2011, 13: 649-659.
    [61]

    Cobbett C S. Phytochelatins and their roles in heavy metal detoxification[J]. Plant Physiol, 2000, 123: 825-833.
    [62] 王关林, 方宏筠. 植物基因工程[M]. 北京:科学出版社,2002.

    [63]

    Coleman G D, Ernst S G. In vitroshoot regeneration of Populus deltoides: effect of cytokinin and genotype[J]. Plant Cell Rep, 1989, 8: 459-462.
    [64]

    Han K H, Meilan R, Ma C, et al. An Agrobacterium tumefaciens transformation protocol effective on a variety of cottonwood hybrids (genus Populus)[J]. Plant Cell Rep, 2000, 19: 315-320.
    [65]

    Leple J C, Brasileiro AC M, Michel M F, et al. Transgenic poplars:expression of chimeric genes using four different constructs[J]. Plant Cell Reports, 1992, 11: 137-141.
    [66]

    Huetteman C A, Preece J E. Thidiazuron: A potent cytokinin for woody culture[J]. Plant Cell Tiss Organ Cult, 1993, 33(2): 105-119.
    [67]

    Yevtushenko D P, Misra S. Efficient Agrobacterium-mediated transformation of commercial hybrid poplar Populus nigra L.× P. maximowiczii A. Henry[J]. Plant Cell Rep, 2010, 29: 211-221.
    [68]

    Howe G T, Goldfarb B, Strauss S H. Agrobacterium mediated transformation of hybrid poplar suspension cultures and regeneration of transformed plants[J]. Plant Cell Tiss Organ Cult, 1994,36:59-71.
    [69]

    Godwin I, Todd G, Lioyd F B, et al. The effects of acetosyringone and pH on Agrobacterium-mediated transformation vary according to plant species[J]. Plant Cell Reports, 1991, 9: 671-675.
    [70]

    Wu H X, Sparks C, Amoah B, et al. Factors influencing successful Agrobacterium-mediated genetic transformation of wheat[J]. Plant Cell Rep, 2003, 21: 659-668.
    [71] 姚 叶, 唐 琪, 李江艳, 等. 杨树基因启动子的克隆及功能研究进展[J]. 山东林业科技,2012,(5):121-125.

    [72]

    Han K H, Ma C P, Strauss S H. Matrix attachment regions (MARs) enhance transformation frequency and transgene expression in poplar[J]. Transgenic Research, 1997, 6: 415-420.
    [73]

    Shan Q, Wang Y, Li J, et al. Targeted genome modification of crop plants using a CRISPR-Cas system[J]. Nat Biotechnol, 2013, 31: 686-688.
  • [1] 朱文旭黄秦军褚延广丁昌俊姜岳忠董玉峰苏晓华 . 转多基因库安托杨非靶目标材性性状分析. 林业科学研究, 2015, 28(4): 593-596.
    [2] 苏晓华张冰玉黄烈健黄秦军张香华 . 转基因林木研究进展. 林业科学研究, 2003, 16(1): 95-103.
    [3] 葛晓兰杜久军张磊曲冠证胡建军 . 胡杨PeERF1基因提高转基因银腺杨84K耐旱性研究. 林业科学研究, 2023, 36(5): 83-90. doi: 10.12403/j.1001-1498.20220604
    [4] 赵学彩郑唐春臧丽娜曲冠证 . 杨树类锌指基因ZFL的功能分析. 林业科学研究, 2013, 26(5): 562-570.
    [5] 张进李建波刘伯斌陈军卢孟柱 . 杨树CDPK基因家族的表达分析及功能预测. 林业科学研究, 2014, 27(5): 604-611.
    [6] 李煜张进王丽娟卢孟柱 . 杨树PtROP家族基因的表达分析与功能预测. 林业科学研究, 2017, 30(1): 1-9. doi: 10.13275/j.cnki.lykxyj.2017.01.001
    [7] 张冰玉苏晓华李义良张永安曲良建王玉珠田颖川 . 转双价抗蛀干害虫基因杨树的获得及其抗虫性鉴定. 林业科学研究, 2005, 18(3): 364-368.
    [8] 王曙光栾维江乔桂荣孙宗修卓仁英 . 适于杨树功能基因组研究的T-DNA激活标签构建. 林业科学研究, 2007, 20(4): 586-590.
    [9] 刘无双杜明会陶维康杨贞诸葛强 . 杨树生物钟节律基因PtCCA1的克隆及表达模式研究. 林业科学研究, 2013, 26(5): 649-654.
    [10] 杜常健张敏周星鲁张磊胡建军 . 杨树杂交群体苗期生长性状的全基因组选择研究. 林业科学研究, 2023, 36(6): 11-19. doi: 10.12403/j.1001-1498.20230083
    [11] 赵岩秋周厚君魏凯丽江成宋学勤卢孟柱 . 杨树中Ⅰ类KNOX基因结构、表达与功能分析. 林业科学研究, 2018, 31(4): 118-125. doi: 10.13275/j.cnki.lykxyj.2018.04.017
    [12] 陈颖李铃韩一凡 . 抗菌肽LcI基因转化杨树的阶段研究. 林业科学研究, 1996, 9(6): 646-649.
    [13] 徐向东任逸秋张利李煜王丽娟卢孟柱 . 杨树PIF基因家族成员表达模式研究. 林业科学研究, 2018, 31(2): 19-25. doi: 10.13275/j.cnki.lykxyj.2018.02.003
    [14] 彭博魏莉杨凯李潞滨 . 大花蕙兰转齿兰环斑病毒外壳蛋白基因及检测. 林业科学研究, 2016, 29(2): 234-237.
    [15] 苏晓华张绮纹姜兴林 . 不同个体(基因型)差异在杨树杂交育种中的效应研究*. 林业科学研究, 1990, 3(6): 613-617.
    [16] 肖霞张立峰齐力旺韩素英 . miR396在落叶松体细胞胚胎中的功能研究. 林业科学研究, 2016, 29(2): 227-233.
    [17] 苏晓华刘琦宁坤刘成功 . 植物功能基因网络及其应用. 林业科学研究, 2018, 31(1): 94-104. doi: 10.13275/j.cnki.lykxyj.2018.01.012
    [18] 李 环丁昌俊苏晓华沈应柏杜克九 . 涝渍胁迫对转多基因库安托杨生长及生理性状的影响. 林业科学研究, 2010, 23(1): 44-52.
    [19] 黄昕蕾王雁 . 石斛属分子生物学研究进展. 林业科学研究, 2018, 31(3): 151-157. doi: 10.13275/j.cnki.lykxyj.2018.03.020
    [20] 张绮纹苏晓华 . 克服杨树远缘杂交受精前障碍的研究. 林业科学研究, 1988, 1(2): 201-205.
  • 加载中
计量
  • 文章访问数:  4009
  • HTML全文浏览量:  327
  • PDF下载量:  1873
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-27

杨树转基因研究进展及展望

  • 1. 北京市农林科学院北京农业生物技术研究中心, 农业基因资源与生物技术北京市重点实验室, 北京 100097
基金项目:  国家"863"计划"杨树抗虫关键基因的鉴定及分子育种技术研究"项目(2013AA102701-6)、北京市农林科学院青年科研基金项目(QNJJ201415)

摘要: 杨树是重要的栽培树种,也是研究林木基因工程的重要模式植物。杨树转基因研究可以打破种属限制,具有高效性和专一性的特点,是对杨树进行遗传改良的重要手段。为了更好的进行该方面的工作,本文介绍了杨树转基因涉及到的抗虫、抗除草剂、木材材性改良、抗逆、抗病、激素调控、开花调控和植物修复等应用领域的研究进展及现状,分析了影响杨树农杆菌转化效率的主要因素,并探讨了杨树转基因研究存在的问题及发展方向,希望能为后期从事林木基因工程研究的科研工作者提供依据。

English Abstract

参考文献 (73)

目录

    /

    返回文章
    返回