• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

盐肤木幼苗对铅胁迫的生理响应

施翔 王树凤 潘红伟 孙海菁 陈益泰 江泽平

引用本文:
Citation:

盐肤木幼苗对铅胁迫的生理响应

  • 基金项目:

    国家自然科学基金青年科学基金项目(31300509);中央级公益性科研院所基本科研业务费专项资金项目(CAFYBB2014QB016,RISF2014004)

  • 中图分类号: S792.99

Physiological Responses of Rhus chinensis under Lead Stress

  • CLC number: S792.99

  • [1]

    Soodan R K, Pakade Y B, Nagpal A, et al. Analytical techniques for estimation of heavy metals in soil ecosystem: A tabulated review[J]. Talanta, 2014, 125: 405-410.
    [2]

    Bolan N, Kunhikrishnan A, Thangarajan R, et al. Remediation of heavy metal(loid)s contaminated soils; To mobilize or to immobilize?[J]. Journal of Hazardous Materials, 2014, 266:141-166.
    [3]

    Sharma P, Dubey R S. Lead toxicity in plants[J]. Brazilian Journal of Plant Physiology, 2005, 17(1): 35-52.
    [4] 段德超, 于明革, 施积炎. 植物对铅的吸收、转运、累积和解毒机制研究进展[J]. 应用生态学报, 2014, 25(1) : 287-296.

    [5]

    Uzu G, Sobanska S, Aliouane Y, et al. Study of lead phytoavailability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation[J]. Environmental Pollution, 2009, 157(4): 1178-1185.
    [6]

    Punamiya P, Datta R, Sarkar D, et al. Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass[Chrysopogon zizanioides (L.)][J]. Journal of Hazardous Materials, 2010, 177(1-3): 465-474.
    [7]

    Wang H H, Shan X Q, Wen B, et al. Effect of indole-3-acetic acid on lead accumulation in maize (Zea mays L.) seedlings and the relevant antioxidant response[J]. Environmental and Experimental Botany, 2007, 61(3): 246-253.
    [8]

    Wojas S, Ruszczyńska A, Bulska E, et al. Ca2+-dependent plant response to Pb2+ is regulated by LCT1[J]. Environmental Pollution, 2007, 147(3): 584-592.
    [9]

    Sahi S V, Bryant N L, Sharma N C, et al. Characterization of a lead hyperaccumulator shrub, Sesbania drummondii[J]. Environmental Science & Technology, 2002, 36(21): 4676-4680.
    [10]

    Tian S K, Lu L L, Yang X E, et al. Spatial imaging and speciation of lead in the accumulator plant Sedum alfredii by microscopically focused synchrotron X-ray investigation[J]. Environmental Science & Technology, 2010, 44(15): 5920-5926.
    [11]

    Meyers D E R, Auchterlonie G J, Webb R I, et al. Uptake and localisation of lead in the root system of Brassica juncea[J]. Environmental Pollution, 2008, 153(2): 323-332.
    [12]

    Kopittke P M, Asher C J, Kopittke R A, et al. Toxic effects of Pb2+ on growth of cowpea (Vigna unguiculata)[J]. Environmental Pollution, 2007, 150(2): 280-287.
    [13]

    Tang Y T, Qiu R L, Zeng X W, et al. Lead, zinc cadmium accumulation and growth simulation in Arabis paniculata Franch[J]. Environmental and Experimental Botany, 2009, 66(1): 126-134.
    [14]

    Strycharz S, Newman L. Use of native plants for remediation of trichloroethylene: I. Deciduous trees[J]. International Journal of Phytoremediation, 2009, 11(2): 150-170.
    [15]

    Baccioa D D, Castagna A, Tognetti R, et al. Early responses to cadmium of two poplar clones that differ in stress tolerance[J]. Journal of Plant Physiology, 2014, 171(18): 1693-1705.
    [16]

    Evlard A, Sergeant K, Printz B, et al. A multiple-level study of metal tolerance in Salix fragilis and Salix aurita clones[J]. Journal of Proteomics, 2014, 101: 113-129.
    [17]

    de Souza S C R, de Andrade S A L, de Souza L A, et al. Lead tolerance and phytoremediation potential of Brazilian leguminous tree species at the seedling stage[J]. Journal of Environmental Management, 2012, 110: 299-307.
    [18]

    Rascio N, Navari-Izzo F. Heavy metal hyperaccumulating plants: How and why do they do it? And whatmakes them so interesting?[J]. Plant Science, 2011, 180(2): 169-181.
    [19]

    Bhargava A, Carmona F F, Bhargava M, et al. Approaches for enhanced phytoextraction of heavy metals[J]. Journal of Environmental Management, 2012, 105: 103-120.
    [20]

    Shu W S, Ye Z H, Zhang Z Q, et al. Natural colonization of plants on five lead/zinc mine tailings in southern China[J]. Restoration Ecology, 2005, 13(1): 49-60.
    [21]

    Lowther J R. Use of a single sulphuric acid-hydrogen peroxide digest for the analysis of Pinus radiata needles[J]. Communications in Soil Science and Plant Analysis, 1980, 11(2): 175-188.
    [22]

    Mukherjee S K, Asanuma S. Possible role of cellular phosphate pool and subsequent accumulation of inorganic phosphate on the aluminum tolerance in Bradyrhizobium japonicum[J]. Soil Biology & Biochemistry, 1998, 30(12): 1511-1156.
    [23] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000: 46-109

    [24]

    Lichtenthaler F W, Cuny E, Weprek S. Eine einfache und leistungsfähige synthese acylierter glyculosylbromide aus hydroxyglycal-estern[J]. Angewandte Chemie, 1983, 95(11): 906-908
    [25]

    Aravind P, Prasad M N V. Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L.: a free floating freshwater macrophyte[J]. Plant Physiology and Biochemistry, 2003, 41(4): 391-397.
    [26] 乔冬梅. 基于黑麦草根系分泌有机酸的铅污染修复机理研究[D]. 北京: 中国农业科学院, 2010.

    [27]

    Pérez-Esteban J, Escolástico C, Ruiz-Fernández J, et al. Bioavailability and extraction of heavy metals from contaminated soil by Atriplex halimus[J]. Environmental and Experimental Botany, 2013, 88: 53-59.
    [28]

    Pottier M, García de la Torre VS, Victor C, et al. Genotypic variations in the dynamics of metal concentrations in poplar leaves: A field study with a perspective on phytoremediation[J]. Environmental Pollution, 2015, 199: 72-83.
    [29]

    Keller C, Hammer D, Kayser A, et al. Root development and heavy metal phytoextraction efficiency: comparison of different plant species in the field[J]. Plant and Soil, 2003, 249(1): 67-81.
    [30] 王树凤. 柳树对重金属铅、镉响应的基因型差异及其耐性机制研究[D]. 杭州: 浙江大学, 2015.

    [31]

    Wang S F, Shi X, Sun H J, et al. Variations in metal tolerance and accumulation in three hydroponically cultivated varieties of Salix integra treated with lead[J]. PLoS One, 2014, 9(9): e108568
    [32]

    Kumar A, Prasad M N V. Lead-induced toxicity and interference in chlorophyll fluorescence in Talinum triangulare grown hydroponically[J]. Photosynthetica, 2015, 53 (1): 66-71.
    [33] 胡筑兵, 陈亚华, 王桂萍, 等. 铜胁迫对玉米幼苗生长、叶绿素荧光参数和抗氧化酶[J]. 植物学通报, 2006, 23(2): 129-137.

    [34] 万雪琴, 张 帆, 夏新莉, 等. 镉处理对杨树光合作用及叶绿素荧光参数的影响[J]. 林业科学, 2008, 44(6): 73-78.

  • [1] 黄雨轩游欣张林平吴斐张扬黄绍华 . 根系分泌物提高土壤磷有效性研究概述. 林业科学研究, 2024, 37(): 1-11. doi: 10.12403/j.1001-1498.20230477
    [2] 谢钰容周志春金国庆陈跃宋振英 . 低P胁迫对马尾松不同种源根系形态和干物质分配的影响. 林业科学研究, 2004, 17(3): 272-278.
    [3] 宋会兴钟章成 . 接种幼套球囊霉对干旱生境中构树幼苗根系形态的影响. 林业科学研究, 2007, 20(1): 79-83.
    [4] 傅志强张恒刘祯奚如春 . 不同油茶品种苗对高温胁迫的生理响应及耐热性评价. 林业科学研究, 2024, 37(2): 189-200. doi: 10.12403/j.1001-1498.20230280
    [5] 苏建荣张燕平杨力真刘娟 . 盐肤木施肥效应及角倍蚜营养环境初步研究. 林业科学研究, 2002, 15(5): 542-546.
    [6] 王超陈晓鸣杨子祥陈航刘娟陆沁亓倩任维宾 . 两种接种方式下角倍蚜虫瘿对寄主盐肤木枝叶生长的影响. 林业科学研究, 2018, 31(1): 78-84. doi: 10.13275/j.cnki.lykxyj.2018.01.010
    [7] 王超陈晓鸣杨子祥陈航邵淑霞吴海霞 . 角倍蚜及其寄主植物盐肤木游离氨基酸研究. 林业科学研究, 2018, 31(3): 114-119. doi: 10.13275/j.cnki.lykxyj.2018.03.015
    [8] 张燕平廖声熙赖永祺苏建荣 . 角倍蚜干母致瘿率与盐肤木复叶序数的相关性. 林业科学研究, 2000, 13(5): 530-534.
    [9] 刘希华丁昌俊张伟溪李文文黄秦军苏晓华 . 不同基因型欧洲黑杨幼苗氮素利用效率差异及其机理初探. 林业科学研究, 2010, 23(3): 368-374.
    [10] 刘军徐金良邹军陈文荣姜景民 . 盐胁迫对红楠幼苗生长及Na+、K+吸收和分布的影响. 林业科学研究, 2013, 26(6): 790-794.
    [11] 黄安瀛陈铭秋林彦卢万鸿王楚彪燕青罗建中 . 不同培养基、生长调节剂浓度对4个尾巨桉无性系组培生根的影响. 林业科学研究, 2023, 36(6): 69-77. doi: 10.12403/j.1001-1498.20230061
    [12] 张莹张玲刘泓施翔王树凤 . 柳树6个无性系在铜尾矿砂中的生长及耐受性差异. 林业科学研究, 2017, 30(6): 936-945. doi: 10.13275/j.cnki.lykxyj.2017.06.008
    [13] 马晓东李霞邹竣竹白媛媛孙振元韩蕾 . 接种平滑白蛋巢菌对蒿柳根系分泌物代谢组的影响. 林业科学研究, 2021, 34(3): 46-55. doi: 10.13275/j.cnki.lykxyj.2021.03.005
    [14] 彭婷婷魏永平章进峰张筱陈洪华陈爱玲赵建国胡亚林曹光球 . 不同浓度石墨烯对杉木幼苗生长、根系形态及15N吸收利用的影响. 林业科学研究, 2022, 35(6): 135-142. doi: 10.13275/j.cnki.lykxyj.2022.006.015
    [15] 林雪锋颉洪涛虞木奎陈顺伟 . 盐胁迫下3种海滨植物形态和生理响应特征及耐盐性差异. 林业科学研究, 2018, 31(3): 95-103. doi: 10.13275/j.cnki.lykxyj.2018.03.013
    [16] 张毅萍吴国英 . 文冠果根系调查研究. 林业科学研究, 1988, 1(5): 564-568.
    [17] 张鹏兰再平马可 . 窄冠刺槐根系的研究. 林业科学研究, 2008, 21(4): 516-522.
    [18] 张大鹏蔡春菊范少辉苏文会 . 重金属Pb2+和Cd2+对毛竹种子萌发及幼苗早期生长的影响. 林业科学研究, 2012, 25(4): 500-504.
    [19] 邓明全朱长进赵丽华 . 油橄榄根系与土壤物理因子关系的研究. 林业科学研究, 1988, 1(4): 376-381.
    [20] 周本智傅懋毅 . 竹林地下鞭根系统研究进展. 林业科学研究, 2004, 17(4): 433-440.
  • 加载中
计量
  • 文章访问数:  2806
  • HTML全文浏览量:  191
  • PDF下载量:  1019
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-09

盐肤木幼苗对铅胁迫的生理响应

  • 1. 中国林业科学研究院亚热带林业研究所, 浙江省林木育种技术研究重点实验室, 浙江 杭州 311400
  • 2. 中国林业科学研究院林业研究所, 北京 100091
基金项目:  国家自然科学基金青年科学基金项目(31300509);中央级公益性科研院所基本科研业务费专项资金项目(CAFYBB2014QB016,RISF2014004)

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回