• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小叶杨与欧洲黑杨杂交子代苗期叶形变异分析

王长海 张晓艳 李金花

引用本文:
Citation:

小叶杨与欧洲黑杨杂交子代苗期叶形变异分析

    作者简介: 王长海(1992-),男,山东潍坊人,硕士研究生。研究方向:杨树遗传改良。电话:18701677296。邮箱:2499789076@qq.com。地址:北京市海淀区香山路东小府1号中国林业科学研究院林业研究所.
    通讯作者: 李金花, lijinh@caf.ac.cn
  • 中图分类号: S792.11

Leaf Morphological Variation on Progeny of Populus simonii × Populus nigra

    Corresponding author: LI Jin-hua, lijinh@caf.ac.cn
  • CLC number: S792.11

  • 摘要: 目的 对以小叶杨(Populus simonii Carr.)无性系‘1-XY’为母本、欧洲黑杨(P. nigra L.)无性系‘N139’为父本杂交F1代及其亲本无性系进行叶片形态性状变异分析和主成分分析,探讨LeafAnalyser和MorphoJ软件在杨树叶片形态性状研究中的应用。 方法 1年生苗木叶片采集后扫描成像,使用Digimizer软件对4个叶片形态性状(叶片面积、叶片周长、叶长和叶宽)进行测量,计算性状统计参数;使用LeafAnalyser软件通过200个标志点分析生成叶片形态轮廓点位标记,构建叶片形态轮廓模型,对叶片形态特征识别并进行主成分分析(PCA);使用MorphoJ软件通过普氏叠印法(GPA)构建叶片形态轮廓模型,并进行主成分分析,生成可视化叶形变化图像。 结果 杂交子代4个叶片形态性状变异系数均大于10%,其中叶面积变异系数最大(31.74%),且性状频率分布相对偏向于父本。基于LeafAnalyser软件叶形变异主成分分析结果显示,第一主成分(PC1)和第二主成分(PC2)共占总变量的91.79%,PC1的叶形轮廓显示,叶面积是对叶形变异PC1影响最大的因子。MophoJ软件叶形变异主成分分析结果显示,PC1、PC2、PC3和PC4共占总变量的85%,标志点数据生成了4个主成分分析叶形轮廓图,直观地显示了叶形特征变化趋势。 结论 基于LeafAnalyser和MorphoJ软件的测量对叶片形态性状精确量化,通过标志法和轮廓法,以可视化图的形式直观地阐明叶片形态变异,为叶片形态性状变异研究提供了方便准确的应用方法。
  • 图 1  杂交子代叶面积频率分布直方图

    Figure 1.  Frequency histograms of leaf area in hybrids

    图 2  基于LeafAnalyser软件叶形变异主成分分析

    Figure 2.  Principal component analysis of leaf shape variation based on LeafAnalyser

    图 3  基于PC1和PC2叶形轮廓模型标志点分布

    Figure 3.  Distribution of points in leaf shape model based on PC1 and PC2

    图 4  基于MorphoJ软件叠印法分析叶片形态点阵模型

    Figure 4.  Leaf shape model of GPA based on procrustes fit of MorphoJ software

    图 5  基于MorphoJ的叶片形态变异主成分

    Figure 5.  Principal component of leaf shape variation by MorphoJ

    表 1  杂交子代无性系叶片形态性状统计参数

    Table 1.  Statistical describing on leaf quantitative characters of hybrids

    性状Traits均值Mean标准差
    Standard deviation
    最大值Maximum最小值Minimum变异系数Variation coefficient/%
    叶面积Leaf area/cm273.3923.29134.5716.6031.74
    叶片周长Leaf perimeter/cm37.10 6.47 53.0521.2317.44
    叶长Leaf length/cm11.05 1.54 14.57 6.9913.96
    叶宽Leaf width/cm10.10 1.81 13.82 4.4517.90
    下载: 导出CSV
  • [1] 张绮纹, 李金花. 杨树工业用材林新品种[M]. 北京: 中国林业出版社, 2003.

    [2] 苏晓华, 丁昌俊, 马常耕. 我国杨树育种的研究进展及对策[J]. 林业科学研究, 2010, 23(1):31-37.

    [3] 李金花, 张绮纹, 苏晓华, 等. 美洲黑杨与不同种源青杨杂种苗叶片和生长性状多水平变异研究[J]. 林业科学研究, 2002, 15(1): 76-82.

    [4] 王祎娜, 黄 洁, 杨重法. 木薯叶面积预测模型研究[J]. 热带作物学报, 2015, 36(6):1025-1029. doi: 10.3969/j.issn.1000-2561.2015.06.003

    [5] 李小琴, 张凤良, 毛常丽, 等. 琴叶风吹楠叶片性状变异分析[J]. 西北林学院学报, 2017, 32(2):143-149. doi: 10.3969/j.issn.1001-7461.2017.02.24

    [6] 胡晓静, 宋于洋, 王 伟. 杨树无性系叶面积测定模型的建立[J]. 湖北农业科学, 2015, 54(22):5736-5739.

    [7]

    Alfas N, Marron N, Ceulemans R. Variability in Populus leaf anatomy and morphology in relation to canopy position, biomass production, and varietal taxon[J]. Annals of Forest Science, 2007, 64(5): 521-532. doi: 10.1051/forest:2007029
    [8] 李金花, 刘喜荣, 卢孟柱, 等. 黑杨派无性系不同冠层叶片性状变异和生长选择[J]. 林业科学, 2015, 51(1):55-65.

    [9]

    Gebauer R, Vanbeveren S, Volarik D, et al. Petiole and leaf traits of poplar in relation to parentage and biomass yield[J]. Forest Ecology and Management, 2016, 362: 1-9.
    [10] 丁昌俊, 黄秦军, 张冰玉, 等. 北方型美洲黑杨不同无性系重要性状评价[J]. 林业科学研究, 2016, 29(3):331-339. doi: 10.3969/j.issn.1001-1498.2016.03.004

    [11] 肖 强, 叶文景, 朱 珠, 等. 利用数码相机和Photoshop软件非破坏性测定叶面积的简便方法[J]. 生态学杂志, 2005, 24(6):711-714. doi: 10.3321/j.issn:1000-4890.2005.06.026

    [12] 戴志聪, 杜道林, 司春灿, 等. 用扫描仪及Image J软件精确测量叶片形态数量特征的方法[J]. 广西植物, 2009, 29(3):342-347. doi: 10.3969/j.issn.1000-3142.2009.03.013

    [13] 王晓彬, 张仁祖, 费 松, 等. 利用扫描仪测量作物叶面积的模式选择与实现技术[J]. 气象科技, 2016, 44(4):675-679. doi: 10.3969/j.issn.1671-6345.2016.04.023

    [14] 高建昌, 郭广君, 国艳梅, 等. 平台扫描仪结合Image J软件测定番茄叶面积[J]. 中国蔬菜, 2011(2):73-77.

    [15] 李 乐, 钟 迪, 贾宝军, 等. 蒙古栎叶面积的数字图像法测定[J]. 西北林学院学报, 2016, 31(6):96-103. doi: 10.3969/j.issn.1001-7461.2016.06.17

    [16]

    Weight C, Parnham D, Waites R. LeafAnalyser: a computational method for rapid and large-scale analyses of leaf shape variation[J]. The Plant Journal, 2008, 53(3): 578-586.
    [17] 宋 佳, 侯 盟, 鲁四海, 等. 一种基于标志点的叶片几何形态分析方法[J]. 兰州大学学报:自然科学版, 2015, 51(5):705-710.

    [18]

    Iwata H, Ukai Y. SHAPE: a computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors[J]. J. Hered, 2002, 93(5): 384-385. doi: 10.1093/jhered/93.5.384
    [19]

    Bylesjo M, Segura V, Soolanayakanahally R Y, et al. LAMINA: a tool for rapid quantification of leaf size and shape parameters[J]. BMC Plant Biol, 2008, 8: 82. doi: 10.1186/1471-2229-8-82
    [20]

    Klingenberg C P. Morpho J: an integrated softwarepackage for geometric morphometrics[J]. MolecularEcology Resources, 2011, 11(2): 353-357.
    [21]

    Maloof J N, Nozue K, Mumbach M R, et al. LeafJ: anImageJ plugin for semi-automated leaf shape measurement[J]. J. Vis. Exp., 2013: e50028.
    [22]

    Liao F Q, Peng J L, Chen R J. LeafletAnalyzer, an automated software for quantifying, comparingand classifying blade and serration features of compound Leaves during development, and among induced mutants and natural variants in the legume medicago truncatula[J]. Frontiers in Plant Science, 2017, 8: 915.
    [23]

    Schaal B A, O Kane S L, Rogstad S H. DNA variation in plant populations[J]. Trends Ecol Evol, 1991, 6(10): 329-333. doi: 10.1016/0169-5347(91)90041-U
    [24] 成星奇,贾慧霞,孙佩,张亚红,胡建军. 丹红杨x通辽1号杨杂交子代叶形性状的遗传变异分析[J]. 林业科学研究, 2019, 32(2):100-110.

    [25]

    Du Q, Xu B, Gong C, et al. Variation in growth, leaf, and wood property traits of Chinese white poplar (Populus tomentosa), a major industrial tree species in Northern China[J]. Canadian Journal of Forest Reserach, 2014, 44(4): 326-339. doi: 10.1139/cjfr-2013-0416
    [26]

    Guet J, Fabbrini F, Fichot R, et al. Genetic variation for leaf morphology, leaf structure and leaf carbon isotope discrimination in Ruropean populutions of black poplar (Populus nigra L.)[J]. Tree Physiology, 2015, 35(8): 850. doi: 10.1093/treephys/tpv056
    [27]

    Drost D R, Puranik S, Novaes E, et al. Genetical genomics of Populus leaf shape variationg[J]. BMC Plant Biology, 2015, 15(1):1-10. doi: 10.1186/S12870-015-0557-7
  • [1] 方周江锡兵龚榜初赖俊声吴剑李煜 . 锥栗杂交F1代果实表型性状变异分析及单株综合选择. 林业科学研究, 2023, 36(5): 21-31. doi: 10.12403/j.1001-1498.20230024
    [2] 栾启福姜景民张建忠沈凤强刘昭息 . 国外松种间杂交育种及其F1 代早期生长评价. 林业科学研究, 2008, 21(3): 314-319.
    [3] 沈乐徐建民李光友胡杨伍世杰梁国坚白惠文 . 尾巨桉杂种F1与抗风性关联的性状分析及其选优. 林业科学研究, 2020, 33(5): 13-20. doi: 10.13275/j.cnki.lykxyj.2020.05.002
    [4] 田潇潇方学智孙汉洲杜孟浩 . 不同油茶物种及品种果实中甘油三酯成分分析. 林业科学研究, 2018, 31(2): 41-47. doi: 10.13275/j.cnki.lykxyj.2018.02.006
    [5] 李鹏谭健晖杨章旗罗群凤凌金燕陈虎陈钊铭贾婕 . 铝胁迫下马尾松二代家系苗生长规律与筛选. 林业科学研究, 2023, 36(5): 121-130. doi: 10.12403/j.1001-1498.20220560
    [6] 吴立栓胡建军苏雪辉李喜林赵自成 . 黑杨树冠雌花分布与少絮无性系的选择. 林业科学研究, 2014, 27(6): 769-775.
    [7] 陈朝黎白晓刚李湘阳曾炳山胡冰 . 硼对黑木相思幼苗生长发育的影响. 林业科学研究, 2023, 36(6): 181-191. doi: 10.12403/j.1001-1498.20230175
    [8] 田潇潇方学智孙汉洲杜孟浩罗凡姚小华 . 不同物种及品种油茶籽的营养特性分析与综合评价. 林业科学研究, 2019, 32(1): 133-140. doi: 10.13275/j.cnki.lykxyj.2019.01.018
    [9] 刘志红解庆 . 腥臭卫矛花发育过程挥发性成分的SPME-GC-MS分析. 林业科学研究, 2020, 33(6): 131-138. doi: 10.13275/j.cnki.lykxyj.2020.06.016
    [10] 江锡兵滕国新范金根罗修宝盛建洪龚榜初 . 长江中下游区板栗主栽品种果实表型和品质综合评价. 林业科学研究, 2022, 35(1): 70-81. doi: 10.13275/j.cnki.lykxyj.2022.01.008
    [11] 杨志玲龚榜初陈增华吴士元吴连海余建功 . 锥栗果实经济性状的数量化分析. 林业科学研究, 2001, 14(1): 90-94.
    [12] 李惠通张芸魏志超贾代东刘雨晖刘爱琴 . 不同发育阶段杉木人工林土壤肥力分析. 林业科学研究, 2017, 30(2): 322-328. doi: 10.13275/j.cnki.lykxyj.2017.02.019
    [13] 江锡兵章平生张东北吴仁超吴剑吴聪连赖俊声龚榜初 . 栗杂交F1代群体遗传结构及其农艺性状关联分析. 林业科学研究, 2022, 35(4): 72-83. doi: 10.13275/j.cnki.lykxyj.2022.004.008
    [14] 粟娟王德祯符史深 . 海南岛尖峰岭热带树木园主要树种的物候研究*. 林业科学研究, 1994, 7(3): 294-300.
    [15] 程诗明顾万春 . 苦楝表型区划的研究. 林业科学研究, 2006, 19(3): 337-341.
    [16] 张勇仲崇禄姜清彬陈羽陈珍 . 木麻黄无性系水培苗抗盐性研究. 林业科学研究, 2008, 21(1): 91-95.
    [17] 张超黄清麟张晓红涂年旺 . 基于GIS建模技术的县级林业区划方法研究. 林业科学研究, 2008, 21(4): 429-435.
    [18] 赵献民龚榜初吴开云陈红星吕贤良王年金 . 浙江省农家柿品种数量分类研究. 林业科学研究, 2012, 25(1): 77-87.
    [19] 袁秀锦肖文发潘磊王晓荣胡文杰崔鸿侠雷静品 . 马尾松林分结构对枯落物层和土壤层水文效应的影响. 林业科学研究, 2020, 33(4): 26-34. doi: 10.13275/j.cnki.lykxyj.2020.04.004
    [20] 段加焕徐正会张新民 . 中国盘腹蚁属19种蚂蚁的形态测量学研究. 林业科学研究, 2023, 36(6): 106-114. doi: 10.12403/j.1001-1498.20230060
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  4769
  • HTML全文浏览量:  2900
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-30
  • 录用日期:  2020-04-14
  • 网络出版日期:  2020-05-09
  • 刊出日期:  2020-05-01

小叶杨与欧洲黑杨杂交子代苗期叶形变异分析

    通讯作者: 李金花, lijinh@caf.ac.cn
    作者简介: 王长海(1992-),男,山东潍坊人,硕士研究生。研究方向:杨树遗传改良。电话:18701677296。邮箱:2499789076@qq.com。地址:北京市海淀区香山路东小府1号中国林业科学研究院林业研究所
  • 林木遗传育种国家重点实验室,国家林业和草原局林木培育重点实验室,中国林业科学研究院林业研究所,北京 100091

摘要:  目的 对以小叶杨(Populus simonii Carr.)无性系‘1-XY’为母本、欧洲黑杨(P. nigra L.)无性系‘N139’为父本杂交F1代及其亲本无性系进行叶片形态性状变异分析和主成分分析,探讨LeafAnalyser和MorphoJ软件在杨树叶片形态性状研究中的应用。 方法 1年生苗木叶片采集后扫描成像,使用Digimizer软件对4个叶片形态性状(叶片面积、叶片周长、叶长和叶宽)进行测量,计算性状统计参数;使用LeafAnalyser软件通过200个标志点分析生成叶片形态轮廓点位标记,构建叶片形态轮廓模型,对叶片形态特征识别并进行主成分分析(PCA);使用MorphoJ软件通过普氏叠印法(GPA)构建叶片形态轮廓模型,并进行主成分分析,生成可视化叶形变化图像。 结果 杂交子代4个叶片形态性状变异系数均大于10%,其中叶面积变异系数最大(31.74%),且性状频率分布相对偏向于父本。基于LeafAnalyser软件叶形变异主成分分析结果显示,第一主成分(PC1)和第二主成分(PC2)共占总变量的91.79%,PC1的叶形轮廓显示,叶面积是对叶形变异PC1影响最大的因子。MophoJ软件叶形变异主成分分析结果显示,PC1、PC2、PC3和PC4共占总变量的85%,标志点数据生成了4个主成分分析叶形轮廓图,直观地显示了叶形特征变化趋势。 结论 基于LeafAnalyser和MorphoJ软件的测量对叶片形态性状精确量化,通过标志法和轮廓法,以可视化图的形式直观地阐明叶片形态变异,为叶片形态性状变异研究提供了方便准确的应用方法。

English Abstract

  • 杨树是世界范围内重要的工业用材林树种[1],杨树人工林在我国北方生态防护林和工业用材林建设中发挥了巨大作用,高产、多抗和优质是我国杨树新品种选育的目标性状[2]。杂交育种是杨树育种的重要途径,有效的早期选择是缩短育种周期、提高育种效率的重要手段[3]。叶片作为植物体的重要器官,是植物进行光合作用和蒸腾作用的主要场所,对光能、水分的利用以及干物质的积累等方面具有直接的影响[4-6]。叶片大小、形态和结构等方面的特征与杨树的生长密切相关,在杨树育种方面具有重要的作用,有研究发现,这些性状受到较强的遗传控制[7-10]。因此,叶形变异研究对杨树遗传改良和早期选择具有重要意义。

    随着计算机技术的兴起,利用图像法结合软件对叶片进行测量与分析的研究逐渐发展起来[11-13]。高建昌等利用Leaf J软件构建了一种番茄(Solanum lycopersicum)叶面积的测定方法[14],李乐等利用Digimizer软件对蒙古栎(Quercus mongolica Fisch. ex Ledeb)叶面积进行测定,并建立了起叶面积估测模型[15]。与传统的测量方法相比,这些软件具有测量速度快、精确度高的特点。但是,目前软件法应用于叶片研究,大多是利用软件进行叶面积、叶长、叶宽等数量形态性状的测定和分析。同时,由于叶形变异难以量化,仅通过叶片形态数量性状无法直观全面地描述叶形变异[16-17]。为弥补叶片数量性状分析不够全面直观的缺点,研发出了一系列软件用于开展叶形变异分析,例如基于生物形态变异定量分析的SHAPE(2002)[18],自动识别叶片边界并进行性状测量的LAMINA(2008)[19]和LeafAnalyser(2008)[16],基于叠印法叶形变异分析的MorphoJ(2011)[20],基于Image J软件叶形变异分析脚本Leaf J(2013)[21],以及基于MATLAB平台的可视化叶片图像处理分析软件LeafletAnalyzer(2015)[22]等。LeafAnalyser软件是Weight等(2008)开发的用于分析叶形变异主成分的大通量叶形分析软件,具有操作简单、便捷,识别快速,结果直观等特点[16],通过自动识别叶片的轮廓,利用标记点标记叶片形状并转化为叶形轮廓模型,再通过叶形轮廓模型的对比,分析影响叶形态变异的主成分。MorphoJ软件是Klingenberg(2011)开发出的叶形变异分析软件,通过叠印法去除了来自叶片大小与图像比例的影响,能直观地分析叶片形态特征上的变异类型和变异程度[20]。这些软件作为叶片形态数量性状在叶形变异分析中的有效补充,有效解决了单纯基于数量性状的叶形变异分析不够全面的问题。

    本研究利用通过扫描法获得的小叶杨无性系‘1-XY’与欧洲黑杨无性系‘N139’及其杂交子代无性系的叶片图像,使用Digimizer软件对叶面积、叶片周长、叶长、叶宽4个叶片形态性状进行了测定,使用leafAnanlyser软件建立叶片形态轮廓模型,使用LeafAnalyser软件和MorphoJ软件对叶形变异进行分析,确定影响叶形变异的主要因素,以评价叶形变异分析软件在杨树叶片形态性状分析中的应用性和可行性。

    • 以小叶杨优良无性系‘1-XY’(母本)与欧洲黑杨优良无性系‘N139’(父本)杂交F1代经扦插扩繁后,与亲本扦插苗一起定植于中国林科院丰南基地。田间试验为5株小区,株行距为30 cm×50 cm。当年生长季选取生长一致、无病虫害苗木1株为标准株,采集自顶端向下第6~9片叶片中的1片,去柄后置于自封袋中编号并记录。亲本各随机取样1株,杂交子代共计305株,编号为1~305。

    • 中国林科院丰南基地位于河北省唐山市丰南区小集镇(39°29′ N,118°16′ E),地处冀东滨海平原。暖温带半湿润大陆性季风气候,四季分明,降水集中,风向有明显的季节变化。年平均气温12.5℃左右,最冷1月平均气温−5.0℃,最热7月平均气温24.8℃,无霜期190 d左右。年平均降水量596.4 mm。土壤为沙壤土。

    • 使用惠普公司ScanJetG4010型扫描仪对叶片进行扫描,分辨率为300 DPI,输出格式为图片文件(*.jpg)并保存。

    • 使用Digimizer软件(MedCalc Software bvba公司)对叶片图像进行叶面积、叶片周长、叶长、叶宽的测定。使用Excel 2007软件进行数据录入和校对,利用IBM SPSS 19.0软件,计算平均值、标准差和变异系数。

    • 使用LeafAnanlyser软件建立叶片标志点的叶形轮廓模型,以叶脉基部为叶形轮廓标志点的起点,标志数量为200个,对叶片表型形态进行计量分析,生成并输出包括叶形轮廓标志点坐标数据的文本文件(*.txt),进行叶片形态变异的主成分分析。使用MorphoJ软件通过普氏叠印法(Generalized Procrustes Analysis,GPA)对叶片标志点数据进行主成分分析,形成叶片形态的可视化叶形轮廓图形。

    • 本研究杂交子代的母本小叶杨和父母欧洲黑杨分别属于黑杨派和青杨派的两个树种,其叶形形状存在较大的种间差异,小叶杨叶片较小,欧洲黑杨叶片较大。杂交子代叶片形态性状的统计参数见表1。4个性状变异系数均大于10%,性状变化幅度较大,其中叶片面积变异系数最大(31.74%),最大值为最小值的8倍。杂交子代叶片叶面积频率分布(图1)符合正态分布,分布相对偏向于父本,叶面积平均值(73.39 cm2)与父本欧洲黑杨(72.95 cm2)相近。

      表 1  杂交子代无性系叶片形态性状统计参数

      Table 1.  Statistical describing on leaf quantitative characters of hybrids

      性状Traits均值Mean标准差
      Standard deviation
      最大值Maximum最小值Minimum变异系数Variation coefficient/%
      叶面积Leaf area/cm273.3923.29134.5716.6031.74
      叶片周长Leaf perimeter/cm37.10 6.47 53.0521.2317.44
      叶长Leaf length/cm11.05 1.54 14.57 6.9913.96
      叶宽Leaf width/cm10.10 1.81 13.82 4.4517.90

      图  1  杂交子代叶面积频率分布直方图

      Figure 1.  Frequency histograms of leaf area in hybrids

    • 使用LeafAnalyser软件通过点位标记对叶片形态性状实现精确量化,利用200个标志点构建了叶片的形态轮廓模型,根据标志点的信息对叶形变异进行主成分分析(PCA),前四个主成分分析(PC1、PC2、PC3、PC4)结果(图2)显示,叶片上方为叶基,下方为叶尖,中间叶片表示平均叶的叶形轮廓,两边叶片为平均叶在该主成分影响下偏移两倍标准差(2SD)的叶形轮廓。分析结果显示,PC1占总变量的87.52%,PC2、PC3和PC4分别占总变量的4.27%、2%和1.6%。前两者占总变量的91.79%,能够解释子代叶片形状的主要差异。根据叶片形状偏离平均叶的叶形轮廓的程度,对子代群体进行叶形变异分析,PC1的叶形轮廓显示,叶面积是对叶形变异第一主成分影响最大的因子。同理,叶尖、叶基和叶片主脉对称性是PC2、PC3和PC4的主要影响因素,PC2和PC3的叶形轮廓呈现出菱形、阔圆形等特征,分别与母本小叶杨和父本欧洲黑杨的相似。

      图  2  基于LeafAnalyser软件叶形变异主成分分析

      Figure 2.  Principal component analysis of leaf shape variation based on LeafAnalyser

      叶片模型标志点在PC1空间中的分布(图3)显示,叶片模型标志点在PC1为横坐标轴上的变化幅度大于在PC2为纵坐标轴上的变化幅度,从PC1轴上可以将大部分个体区分开。负向标准差区域(左边)叶片轮廓显示,其叶片小,叶形为菱形,近似于母本小叶杨,而正向标准差区域(右边)叶形轮廓显示,其叶片大,叶形为三角形,近似于父本欧洲黑杨,表明来自不同亲本的遗传效应。

      图  3  基于PC1和PC2叶形轮廓模型标志点分布

      Figure 3.  Distribution of points in leaf shape model based on PC1 and PC2

    • 利用MorphoJ软件对子代叶片形态标志点进行GPA分析,结果(图4)显示,去除了来自叶片大小和比例的影响因素(叶片位置和大小的差异),所有叶片最大限度地重合,能够直观地反映叶片形态特征上的差异。基于GPA分析的叶片轮廓点阵模型图上,上方为叶基,下方为叶尖,蓝色点为根据叶片形态标志点构建的平均叶的叶形轮廓模型,红色数字为标志点的序号。

      图  4  基于MorphoJ软件叠印法分析叶片形态点阵模型

      Figure 4.  Leaf shape model of GPA based on procrustes fit of MorphoJ software

      基于GPA分析叶片标志点的叶形轮廓(图5)显示,PC1的叶形变化主要由叶长和叶宽决定,叶基和叶尖标志点的变化趋势为外延(叶片长度增大),叶片两侧叶缘标志点的变化趋势为内收(叶片宽度减小);PC2的叶形变化主要由叶尖、叶基及两侧叶缘的形态决定,叶尖和叶基两侧叶缘标志点的变化趋势为外延,叶基和叶尖两侧叶缘标志点的变化趋势为内收;PC3的叶形变化主要由叶尖方向决定,叶尖标志点的变化趋势为叶尖向不同方向偏移,即叶片主脉对称性的变化趋势;PC4的叶形变化主要由叶片上下宽度的形态决定,叶尖两侧叶缘标志点变化趋势为外延,其次是叶基两侧叶缘的标志点变化趋势为内敛。

      图  5  基于MorphoJ的叶片形态变异主成分

      Figure 5.  Principal component of leaf shape variation by MorphoJ

      利用MorphoJ软件基于GPA分析200个标志点数据、对子代叶片形态进行主成分分析,对叶片形态变化的统计结果形成了可视化的叶形轮廓图(图5),直接构建了叶形轮廓,实心点轮廓为标准叶的叶片形态,短线轮廓为标准叶在该主成分下的变异趋势,其最终轮廓显示了对该主成分影响最显著的叶片形态,杂交子代标准叶的形态轮廓介于母本和父本之间。在叶片形态标志点数据的主成分分析结果中,PC1占总变量的50%,PC2占总变量的19%,PC3和PC4分别占总变量的11%和5%,前四个主成分累计占总变量的85%,能够解释子代叶片形状的主要差异。

    • 利用形态性状和特征来估测变异是最现实的方法,尤其是当要求在短期内对变异有所了解或其他生化等方法无法开展时,形态学手段可作为一种有价值的选择方法[23-24]。叶形变异作为叶片性状研究中的重要组成部分,在遗传育种、植物分类、系统进化等方面均具有重要的应用[25-27]。基于传统测量方法的叶片形态性状,大多为叶长、叶宽、叶面积等数量性状,难以准确量化叶片形状等质量性状,且丢失一些叶片特征,亦无法分离叶形形态的数量和质量性状。近年来,基于计算机识别的叶片形态性状测量方法被广泛应用于国内外叶片形态性状变异研究,通过叶形分析软件研究叶片形态变异,涉及植物分类、种质鉴定等方面,但在杨树叶片性状变异研究方面的应用未见报道。本研究以小叶杨与欧洲黑杨杂交F1代子代为试材,通过扫描仪和叶片识别软件精确测定叶片形态性状,构建了一种全面高效叶片形态的分析方法,为后续研究杂交子代中叶片形态变异提供了一种有效的参考方法。

      本研究使用叶形分析软件LeafAnalyser和MorphoJ对小叶杨与欧洲黑杨杂交子代无性系大量叶片形态性状进行快速测量,通过叶片形态标志点和普氏叠印法分析(GPA),构建了叶片形态轮廓模型,对叶形变异的主成分分析呈现了可视化的叶形变化,可直观地确定影响叶形变异的主要特征,并通过叶形轮廓模型图像探讨了子代变异与亲本表现之间的联系。这种基于标志点的叶片形态分析方法,能够直观地反映叶片形态的特征差异,并能表现出亲本的叶片形态特征对子代的影响,是对经典叶形测量和变异分析方法的提升,弥补了传统性状测量方法产生的叶形特征不足的情况,在杨树叶形态变异及性状相关性选择研究中具有应用前景。

    • 本研究发现小叶杨与欧洲黑杨杂交F1代无性系叶面积变异丰富,基于叶形分析软件LeafAnalyser和MorphoJ的测量实现了叶片形态性状精确量化,通过标志法和轮廓法,以可视化图片的形式直观地阐明了叶片形态变异,为叶片形态性状变异研究提供了方便准确的应用方法。

参考文献 (27)

目录

    /

    返回文章
    返回