• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渐进式干旱对辽东栎幼树光合特性的影响及敏感性分析

王丽敏 周帅

引用本文:
Citation:

渐进式干旱对辽东栎幼树光合特性的影响及敏感性分析

    作者简介: 王丽敏,硕士研究生,助教。研究方向:林木育种研究。电话:13623661289 E-mail:2455902304@qq.com.
    通讯作者: 周帅, 505239941@qq.com
  • 中图分类号: Q945.11

Effects and Sensitivity of Progressive Drought on Photosynthetic Characteristics of Quercus liaotungensis Seedlings

    Corresponding author: ZHOU Shuai, 505239941@qq.com
  • CLC number: Q945.11

  • 摘要: 目的 探究辽东栎幼树叶片的光合系统对土壤渐进式干旱的响应,并筛选干旱敏感性指标。 方法 采用盆栽渐进式干旱胁迫法,对2年生辽东栎幼苗叶片的叶倾角、叶绿素荧光、光合作用等指标进行方差分析(ANOVA)和LOESS非线性拟合。 结果 渐进式干旱对光合气体交换的影响最显著,其次是叶倾角,最后是光系统II(PSII)的电子传递和能量耗散。依据土壤相对含水量(SRWC)对光合特性的影响,辽东栎幼树光合系统的干旱响应可划分为4个阶段:第1阶段(胁迫未发生,26%>SRWC>20%),光合气体交换参数无下降;第2阶段(中度胁迫,20%>SRWC>14%),气孔限制效应明显,叶倾角降低至−14.0 ± 1.7°;第3阶段(重度胁迫,14%>SRWC>8%),叶片水分利用效率(WUE)显著下降,叶倾角值降低至−43.2 ± 10.3°,光合气体交换明显减少,表明SRWC降低至14%是辽东栎幼树的灌溉临界值;第4阶段(极度胁迫,SRWC<8%),PSII的电子传递和能量耗散显著改变,光合机构严重受损,叶倾角值降低至−68.5 ± 6.7°,表明SRWC降低至8%是辽东栎幼树叶片的致死临界值。基于叶倾角对土壤干旱的响应存在阶段性差异,其可作为辽东栎幼树灌溉临界值的预警指标;PSⅡ单位面积有活性反应中心数量RCO/CS、单位反应中心吸收的能量ABS/RC、单位反应中心以热能形式耗散的能量DIO/RC、叶片性能指数PIABS可作为叶片致死的预警指标。 结论 本研究观察到辽东栎幼树叶片光合系统对土壤干旱的响应存在阶段性差异,据此确定了灌溉临界值和反映土壤干旱的敏感性指标,可以为辽东栎幼树高效灌溉策略的制定提供理论基础。
  • 图 1  干旱处理期间根区土壤相对含水量(SRWC)的变化

    Figure 1.  Changes of soil relative water content (SRWC) in rooting zone under progressive drought conditions

    图 2  叶倾角测量示意图

    Figure 2.  Schematic diagram of leaf droop angle measurement

    图 3  渐进式干旱对叶倾角的影响

    Figure 3.  Effects of progressive drought on leaf droop angle

    图 4  渐进式干旱对叶绿素荧光参数的影响

    Figure 4.  Effects of progressive drought on chlorophyll fluorescence parameters

    图 5  渐进式干旱对气体交换参数的影响

    Figure 5.  Response of gas exchange parameters to progressive drought

    图 6  辽东栎育苗干旱胁迫水平及灌溉方案

    Figure 6.  Stress-levels scheme and irrigation schedule of Q. liaotungensis seedling cultivation

    图 7  渐进式干旱对辽东栎光合作用影响的叶倾角预测模型

    Figure 7.  Leaf droop angle prediction model for the effects of progressive drought on photosynthesis of Q. liaotungensis

  • [1]

    NAUMANN G, ALFIERI L, WYSER K, et al. Global changes in drought conditions under different levels of warming[J]. Geophysical Research Letters, 2018, 45(7): 3285-3296. doi: 10.1002/2017GL076521
    [2]

    TARDIEU F, SIMONNEAU T, MULLER B. The physiological basis of drought tolerance in crop plants: a scenario-dependent probabilistic approach[J]. Annual review of plant biology, 2018, 69(1): 733-759. doi: 10.1146/annurev-arplant-042817-040218
    [3] 王 巍, 李庆康, 马克平. 东灵山地区辽东栎幼苗的建立和空间分布[J]. 植物生态学报, 2000, 24(5):595-600. doi: 10.3321/j.issn:1005-264X.2000.05.014

    [4] 李宗善, 陈维梁, 韦景树, 等. 北京东灵山辽东栎林树木生长对气候要素的响应特征[J]. 生态学报, 2021, 41(1):27-37.

    [5] 曹林青, 钟秋平, 罗 帅, 等. 干旱胁迫下油茶叶片结构特征的变化[J]. 林业科学研究, 2018, 31(3):136-143. doi: 10.13275/j.cnki.lykxyj.2018.03.018

    [6]

    REICHGELT T, LEE W G. Geographic variation of leaf form among indigenous woody angiosperms in New Zealand[J]. New Zealand Journal of Botany, 2022, 60(2): 134-158. doi: 10.1080/0028825X.2021.1960384
    [7] 罗孟容, 梁文斌, 杨 艳, 等. 干旱胁迫对栀子光合作用及叶绿体超微结构的影响[J]. 经济林研究, 2021, 39(03):165-174. doi: 10.14067/j.cnki.1003-8981.2021.03.020

    [8]

    QIN D W, CHEN W J, ZHONG L X, et al. Gas exchange and hydraulic function in seedlings of three basal angiosperm tree-species during water-withholding and re-watering[J]. Global Ecology and Conservation, 2021, 28: e01702. doi: 10.1016/j.gecco.2021.e01702
    [9]

    SONG X, ZHOU G, HE Q. Critical leaf water content for maize photosynthesis under drought stress and its response to rewatering[J]. Sustainability, 2021, 13(13): 7218. doi: 10.3390/su13137218
    [10]

    GUO Y Y, TIAN S S, LIU S S, et al. Energy dissipation and antioxidant enzyme system protect photosystem II of sweet sorghum under drought stress[J]. Photosynthetica, 2018, 56(3): 861-872. doi: 10.1007/s11099-017-0741-0
    [11] 闫兴富, 邓晓娟, 王 静, 等. 种子大小和干旱胁迫对辽东栎幼苗生长和生理特性的影响[J]. 应用生态学报, 2020, 31(10):3331-3339. doi: 10.13287/j.1001-9332.202010.006

    [12]

    YAN M J, YAMANAKA N, YAMAMOTO F, et al. Responses of leaf gas exchange, water relations, and water consumption in seedlings of four semiarid tree species to soil drying[J]. Acta Physiologiae Plantarum, 2010, 32(1): 183-189. doi: 10.1007/s11738-009-0397-x
    [13]

    DU S, WANG Y L, KUME T, et al. Sapflow characteristics and climatic responses in three forest species in the semiarid Loess Plateau region of China[J]. Agricultural and Forest Meteorology, 2011, 151(1): 1-10. doi: 10.1016/j.agrformet.2010.08.011
    [14] 石耀辉, 周广胜, 蒋延玲, 等. 贝加尔针茅响应降水变化敏感指标及关键阈值[J]. 生态学报, 2017, 37(8):2620-2630.

    [15] 张金政, 张起源, 孙国峰, 等. 干旱胁迫及复水对玉簪生长和光合作用的影响[J]. 草业学报, 2014, 23(1):167-176. doi: 10.11686/cyxb20140120

    [16]

    BURNETT A C, SERBIN S P, DAVIDSON K J, et al. Detection of the metabolic response to drought stress using hyperspectral reflectance[J]. Journal of Experimental Botany, 2021, 72(18): 6474-6489. doi: 10.1093/jxb/erab255
    [17]

    LI H, YIN Z, MANLEY P, et al. Early drought plant stress detection with bi-directional long-term memory networks[J]. Photogrammetric Engineering & Remote Sensing, 2018, 84(7): 459-468.
    [18]

    RAMOS-GIRALDO P, REBERG-HORTON C, LOCKE A M, et al. Drought stress detection using low-cost computer vision systems and machine learning techniques[J]. IT Professional, 2020, 22(3): 27-29. doi: 10.1109/MITP.2020.2986103
    [19]

    KENCHANMANE RAJU S K, ADKINS M, ENERSEN A, et al. Leaf Angle eXtractor: A high‐throughput image processing framework for leaf angle measurements in maize and sorghum[J]. Applications in plant sciences, 2020, 8(8): e11385.
    [20]

    NI Z, LIU Z, HUO H, et al. Early water stress detection using leaf-level measurements of chlorophyll fluorescence and temperature data[J]. Remote Sensing, 2015, 7(3): 3232-3249. doi: 10.3390/rs70303232
    [21]

    BRIGLIA N, WILLIAMS K, WU D, et al. Image-based assessment of drought response in grapevines[J]. Frontiers in plant science, 2020, 11: 595. doi: 10.3389/fpls.2020.00595
    [22]

    SMART R E. Aspects of water relations of the grapevine (Vitis vinifera)[J]. American Journal of Enology and Viticulture, 1974, 25(2): 84-91. doi: 10.5344/ajev.1974.25.2.84
    [23] 林 琭, 汤 昀, 张纪涛, 等. 不同水势对黄瓜花后叶片气体交换及叶绿素荧光参数的影响[J]. 应用生态学报, 2015, 26(7):2030-2040. doi: 10.13287/j.1001-9332.20150506.026

    [24] 李鹏民, 高辉远. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J]. 植物生理与分子生物学学报, 2005, 31(6):559-566.

    [25]

    TSSIMILLI-MICHAEL M, STRASSER R J. In vivo assessment of stress impact on plant's vitality: applications in detecting and evaluating the beneficial role of mycorrhization on host plants[J]. Mycorrhiza, 2008, 3: 679-703.
    [26]

    TANKARI M, WANG C, MA H, et al. Drought priming improved water status, photosynthesis and water productivity of cowpea during post-anthesis drought stress[J]. Agricultural Water Management, 2021, 245: 106565. doi: 10.1016/j.agwat.2020.106565
    [27]

    ZHAO D, ZHANG X, FANG Z, et al. Physiological and transcriptomic analysis of tree peony (Paeonia section Moutan DC.) in response to drought stress[J]. Forests, 2019, 10(2): 135. doi: 10.3390/f10020135
    [28]

    BI A, FAN J, HU Z, et al. Differential acclimation of enzymatic antioxidant metabolism and photosystem II photochemistry in tall fescue under drought and heat and the combined stresses[J]. Frontiers in Plant Science, 2016, 7(403): 453.
    [29]

    GUHA A, SENGUPTA D, REDDY A R. Polyphasic chlorophyll a fluorescence kinetics and leaf protein analyses to track dynamics of photosynthetic performance in mulberry during progressive drought[J]. Journal of Photochemistry and Photobiology B:Biology, 2013, 119: 71-83. doi: 10.1016/j.jphotobiol.2012.12.006
    [30]

    FLEXAS J, BARON M, BOTA J, et al. Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri × V. rupestris)[J]. Journal of experimental Botany, 2009, 60(8): 2361-2377. doi: 10.1093/jxb/erp069
    [31]

    LI F L, BAO W K, WU N. Effects of water stress on growth, dry matter allocation and water-use efficiency of a leguminous species, Sophora davidii[J]. Agroforestry systems, 2009, 77(3): 193-201. doi: 10.1007/s10457-008-9199-1
    [32]

    BANO H, ATHAR H R, ZAFAR Z U, et al. Linking changes in chlorophyll a fluorescence with drought stress susceptibility in mung bean [Vigna radiata (L.) Wilczek][J]. Physiologia Plantarum, 2021, 172(2): 1244-1254. doi: 10.1111/ppl.13327
    [33]

    MANAA A, GOUSSI R, DERBALI W, et al. Photosynthetic performance of quinoa (Chenopodium quinoa Willd. ) after exposure to a gradual drought stress followed by a recovery period[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2021, 1862(5): 148383. doi: 10.1016/j.bbabio.2021.148383
    [34] 王海珍, 梁宗锁, 韩蕊莲, 等. 辽东栎 (Quercus liaotungensis) 幼苗对土壤干旱的生理生态适应性研究[J]. 植物研究, 2005, 25(3):311-316.

    [35]

    RYBKA K, JANASZEK-MAŃKOWSKA M, SIEDLARZ P, et al. Machine learning in determination of water saturation deficit in wheat leaves on basis of Chl a fluorescence parameters[J]. Photosynthetica, 2019, 57(1): 226-230. doi: 10.32615/ps.2019.017
    [36]

    SOUSARAEI N, MASHAYEKHI K, MOUSAVIZADEH S J, et al. Screening of tomato landraces for drought tolerance based on growth and chlorophyll fluorescence analyses[J]. Horticulture, environment, and biotechnology, 2021, 62(4): 521-535. doi: 10.1007/s13580-020-00328-5
    [37]

    ZHOU R, KAN X, CHEN J, et al. Drought-induced changes in photosynthetic electron transport in maize probed by prompt fluorescence, delayed fluorescence, P700 and cyclic electron flow signals[J]. Environmental and Experimental Botany, 2019, 158: 51-62. doi: 10.1016/j.envexpbot.2018.11.005
  • [1] 王树凤施翔陈益泰孙海菁王涛陈雨春 . 遮荫对弗吉尼亚栎苗木生长及光合-荧光参数的影响. 林业科学研究, 2019, 32(5): 99-106. doi: 10.13275/j.cnki.lykxyj.2019.05.013
    [2] 褚建民孟平张劲松高峻 . 土壤水分胁迫对欧李幼苗光合及叶绿素荧光特性的影响. 林业科学研究, 2008, 21(3): 295-300.
    [3] 张往祥曹福亮 . 高温期间水分对银杏光合作用和光化学效率的影响. 林业科学研究, 2002, 15(6): 672-679.
    [4] 姚宁刘建锋江泽平常二梅赵秀莲谢瑞王奇 . 光周期与光质对栎属幼苗生长及叶绿素荧光的影响. 林业科学研究, 2022, 35(1): 59-69. doi: 10.13275/j.cnki.lykxyj.2022.01.007
    [5] 牛存洋寿文凯杨喜田张志华乔永胜 . 太行山区栓皮栎、刺槐和侧柏对干旱的适应策略研究. 林业科学研究, 2022, 35(6): 73-82. doi: 10.13275/j.cnki.lykxyj.2022.006.008
    [6] 李 环丁昌俊苏晓华沈应柏杜克九 . 涝渍胁迫对转多基因库安托杨生长及生理性状的影响. 林业科学研究, 2010, 23(1): 44-52.
    [7] 贺顺钦王发其 . 辽东栎苗木早期生长与光的关系. 林业科学研究, 2001, 14(6): 697-700.
    [8] 许丽娟刘海轩吴鞠李金航李苹孙广鹏李军徐程扬 . 生长抑制剂对大叶黄杨形态及光合作用的影响. 林业科学研究, 2018, 31(6): 89-97. doi: 10.13275/j.cnki.lykxyj.2018.06.013
    [9] 高健吴泽民彭镇华 . 滩地杨树光合作用生理生态的研究. 林业科学研究, 2000, 13(2): 147-152.
    [10] 施征史胜青肖文发齐力旺 . 脱水胁迫对梭梭和胡杨苗叶绿素荧光特性的影响. 林业科学研究, 2008, 21(4): 566-570.
    [11] 李文英顾万春 . 蒙古栎天然群体等位酶遗传多样性研究. 林业科学研究, 2003, 16(3): 269-276.
    [12] 段如雁韦小丽安常蓉张兰 . 花榈木幼苗接种不同根瘤菌对中度干旱胁迫的生理响应. 林业科学研究, 2018, 31(4): 61-69. doi: 10.13275/j.cnki.lykxyj.2018.04.009
    [13] 骆琴娅漆龙霖方晰杨志林 . 山茶属植物五个物种光合作用的研究. 林业科学研究, 1993, 6(3): 311-316.
    [14] 陈应龙弓明钦陈羽王凤珍 . 外生菌根菌接种对红椎生长及光合作用的影响. 林业科学研究, 2001, 14(5): 515-522.
    [15] 张川红沈应柏尹伟伦 . 盐胁迫对国槐和核桃幼苗光合作用的影响. 林业科学研究, 2002, 15(1): 34-40.
    [16] . 光合作用光响应曲线模型选择及低光强属性界定. 林业科学研究, 2009, 22(6): 765-771.
    [17] . 厚壁毛竹光合作用对环境因子响应的季节变化. 林业科学研究, 2009, 22(6): 872-877.
    [18] 刘永安骆晓铭魏建国杨洪彬远藤利明胡庭兴 . 不同水分条件下麻疯树幼苗的光合生理适应性研究. 林业科学研究, 2010, 23(1): 108-113.
    [19] . 受小蠹虫不同阶段为害的云南松光合生理反应分析. 林业科学研究, 2009, 22(3): -.
    [20] 郭鑫炜刘世荣王晖陈志成聂秀青张京磊明安刚陈琳 . 马尾松和红锥叶片解剖和光合对穿透雨减少的响应. 林业科学研究, 2022, 35(6): 1-11. doi: 10.13275/j.cnki.lykxyj.2022.006.001
  • 加载中
图(7)
计量
  • 文章访问数:  2580
  • HTML全文浏览量:  1060
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-05
  • 录用日期:  2022-08-09
  • 网络出版日期:  2023-03-28
  • 刊出日期:  2023-06-20

渐进式干旱对辽东栎幼树光合特性的影响及敏感性分析

    通讯作者: 周帅, 505239941@qq.com
    作者简介: 王丽敏,硕士研究生,助教。研究方向:林木育种研究。电话:13623661289 E-mail:2455902304@qq.com
  • 1. 山西林业职业技术学院,山西 太原 030012
  • 2. 山西省林业与草原科学研究院,山西 太原 030012
  • 3. 山西农业大学,山西 太谷 030800

摘要:  目的 探究辽东栎幼树叶片的光合系统对土壤渐进式干旱的响应,并筛选干旱敏感性指标。 方法 采用盆栽渐进式干旱胁迫法,对2年生辽东栎幼苗叶片的叶倾角、叶绿素荧光、光合作用等指标进行方差分析(ANOVA)和LOESS非线性拟合。 结果 渐进式干旱对光合气体交换的影响最显著,其次是叶倾角,最后是光系统II(PSII)的电子传递和能量耗散。依据土壤相对含水量(SRWC)对光合特性的影响,辽东栎幼树光合系统的干旱响应可划分为4个阶段:第1阶段(胁迫未发生,26%>SRWC>20%),光合气体交换参数无下降;第2阶段(中度胁迫,20%>SRWC>14%),气孔限制效应明显,叶倾角降低至−14.0 ± 1.7°;第3阶段(重度胁迫,14%>SRWC>8%),叶片水分利用效率(WUE)显著下降,叶倾角值降低至−43.2 ± 10.3°,光合气体交换明显减少,表明SRWC降低至14%是辽东栎幼树的灌溉临界值;第4阶段(极度胁迫,SRWC<8%),PSII的电子传递和能量耗散显著改变,光合机构严重受损,叶倾角值降低至−68.5 ± 6.7°,表明SRWC降低至8%是辽东栎幼树叶片的致死临界值。基于叶倾角对土壤干旱的响应存在阶段性差异,其可作为辽东栎幼树灌溉临界值的预警指标;PSⅡ单位面积有活性反应中心数量RCO/CS、单位反应中心吸收的能量ABS/RC、单位反应中心以热能形式耗散的能量DIO/RC、叶片性能指数PIABS可作为叶片致死的预警指标。 结论 本研究观察到辽东栎幼树叶片光合系统对土壤干旱的响应存在阶段性差异,据此确定了灌溉临界值和反映土壤干旱的敏感性指标,可以为辽东栎幼树高效灌溉策略的制定提供理论基础。

English Abstract

  • 气候变化导致全球水分循环的改变,重塑了大部分地区的土壤-植被-大气连续体,增加了干旱发生的频率和持续时间[1]。目前,干旱已成为多数地区植物主要遭受的环境胁迫[2],而研究干旱对植物的作用机理,制定高效节水的灌溉策略成为当前人们的重要议题。

    辽东栎(Quercus liaotungensis Koidz.)是我国华北中低山地带针阔叶混交林的建群树种[3]。随着气候变化加剧,土壤干旱成为辽东栎,尤其是辽东栎幼树生长的主要限制因素之一[4]。光合作用对干旱胁迫有明显的响应,其可以引发气孔限制(SL)或非气孔限制(NSL),亦或使2种限制的叠加出现,植物表现出多种干旱响应,例如:在光合系统的结构方面,气孔[5]、叶片表型特征[6]及叶绿体等超微结构[7]发生变化;在光合系统与环境的物质交换方面,气体交换参数[8]和叶片含水量发生变化[9];在光合系统的能量流动方面,用于抗氧化防御和非光化学猝灭的能量改变,光能利用效率随之变动[10]。目前,干旱胁迫对辽东栎幼树的表型生理特性、叶片气体交换、水分利用效率、木质部液流的影响已有研究报道[11-13],但对光合系统的影响机制仍然不清晰。

    由于植物光合系统各组分对土壤干旱的敏感性不同[14],可以利用敏感性指标判断干旱程度。目前已有通过监测植物水势、叶绿素含量[15]、叶片反射光谱[16],叶片颜色信息[17]、叶温[18]、叶倾角[19]和叶片叶绿素荧光[20]判断干旱胁迫程度的研究。现有研究证实,叶倾角、叶片叶绿素荧光和光合气体交换参数均与植株含水量关联密切[21-23],但干旱胁迫下叶倾角与光合系统各组分之间的关联尚不清晰。鉴于此,本研究采用盆栽渐进式干旱胁迫法,以2年生辽东栎幼树为试材,研究干旱胁迫对辽东栎光合作用的结构、物质交换、能量流动等方面的影响机制,筛选干旱敏感性指标,为辽东栎高效灌溉提供理论依据。

    • 辽东栎种子于2018年采自山西省临汾市三交村(35°57′53.64″ N,112°4′35.76″ E,海拔1 197 m),在山西省林业科学与草原研究院阳曲试验基地(38.0981° N,112.7346° E,海拔961 m)进行播种和培育。播种容器高25 cm、上径36 cm、下径31 cm,容积26.6 L,pH 6.5~7.0。培养土为壤土,水分特征按照《森林土壤水分-物理性质的测定》(LY/T1215-1999)测定并计算,毛管孔隙度45.7% ± 8.4%,非毛管孔隙度4.8% ± 1.4%,总孔隙度50.5% ± 7.1%,土壤饱和含水量29.9% ± 3.7%。2021年1月选择15株生长状况良好、长势一致(苗高20 ± 5 cm,地径4.0 ± 0.5 mm)的幼树,带盆转移到人工气候室[光照强度350 μmol·m−2·s−1,光照时间10 h·d−1,昼夜环境温度(28 ± 2)°C/(22 ± 2)°C,空气湿度(50 ± 10)%],进行1个月的环境适应,期间采用与田间培养时相同的除草和浇水等管理措施。

    • 试验在人工气候室内进行,环境参数不变。采用盆栽渐进式干旱胁迫法进行干旱处理,即试验开始前48 h,将15株辽东栎幼树充分灌水,达到土壤最大持水量,然后停止浇水,进行自然干旱处理。随机选取5株幼树,在试验期间每2 h利用与电脑相连的土壤湿度传感器(ST-TR-EC,Sciento,中国)自动记录1次土壤相对含水率(SRWC)。根据预试验结果,当平均SRWC低于5%时,叶片永久萎蔫,此时试验停止(图1)。

      图  1  干旱处理期间根区土壤相对含水量(SRWC)的变化

      Figure 1.  Changes of soil relative water content (SRWC) in rooting zone under progressive drought conditions

    • 试验期间,在每株上的半木质化枝上选择1片成熟、完整、无遮挡的叶片,于每日10:00,采用数码相机(H805,Forsafe,中国)在固定位置、镜头高度与叶柄基部相同的角度拍照。试验期间保持拍照植株的位置和角度不变动。获得的图像采用ImageJ 1.53c(National Institutes of Health,美国)测量叶倾角,共计30个重复。测量步骤如下(图2):

      图  2  叶倾角测量示意图

      Figure 2.  Schematic diagram of leaf droop angle measurement

      (1)在试验开始时的照片中,将通过叶柄基部的水平线确定为基线;

      (2)在其余照片中,测量叶柄基部至叶尖的连线与基线之间的夹角,即叶倾角;

      当叶柄基部至叶尖的连线位于基线上部时,叶倾角定义为正值;位于基线下部时,叶倾角定义为负值。

    • 每日9:00开始测定快速叶绿素荧光指标,每株选取1片成熟、完整、无遮挡的叶片,暗适应15 min,使用Mini调制式叶绿素荧光仪(FluorPen FP110,Photon Systems Instruments,捷克)测量叶肉部分。测量脉冲光强度900 μmol·m−2·s−1(持续30 µs),饱和光强度2 000 μmol·m−2·s−1,光化光强度300 μmol·m−2·s−1。根据获取的叶绿素荧光诱导动力学曲线计算:暗适应后照光150 μs和300 μs时的相对荧光强度VL和VK、光系统Ⅱ(PSⅡ)单位面积有活性反应中心数量RCO/CS、单位反应中心吸收的能量ABS/RC、单位反应中心捕获的用于还原QA的能量TRO/RC,单位反应中心用于将电子从Q− A传递到PQ的能量ETO/RC、单位反应中心用于将电子从Q− A传递到PSI的能量REO/RC、单位反应中心以热能形式耗散的能量DIO/RC、叶片性能指数PIABS。计算方法参考文献[24-25]

      快速叶绿素荧光指标测定完成后,选取同一叶片继续黑暗适应15 min后,采用前述Mini调制式叶绿素荧光仪,变更测量位置,测定叶肉部分的稳态叶绿素荧光,仪器参数设置不变。按照仪器内置的NPQ2程序(光周期200 s,每隔20 s测量1次,共10次;暗周期390 s,每隔60 s测量1次,共7次)自动计算出最大量子产额QYmax和非光化学猝灭系数NPQ。

    • 叶绿素荧光测定后,在同一叶片采用光合仪(LCpro-T,ADC,英国)测定气体交换参数。仪器参数为:白色光源,光强300 μmol·m−2·s−1,开放气路,空气流速200 μmol·s−1,环境CO2浓度443 ± 12 μmol·mol−1,叶片温度25 ± 0.2℃。测量开始后,每隔30 s记录1次数据,将20 min内的最大值记为光合速率Pn、蒸腾速率E、气孔导度gs和胞间CO2浓度Ci。水分利用效率WUE由Pn与E的比值计算得出。

    • 依据各项指标测定时的SRWC,将数据分为8个分组:

      SRWC≥24.5%(标记为SRWC-26%),

      24.5%>SRWC≥21.5%(标记为SRWC-23%),

      21.5%>SRWC≥18.5%(标记为SRWC-20%),

      18.5%>SRWC≥15.5%(标记为SRWC-17%),

      15.5%>SRWC≥12.5%(标记为SRWC-14%),

      12.5%>SRWC≥9.5%(标记为SRWC-11%),

      9.5%>SRWC≥6.5%(标记为SRWC-8%),

      SRWC<6.5%(标记为SRWC-5%)。

      采用方差分析和数据平滑统计指标间的差异和变化趋势,数据平滑方式为LOESS,平滑阈值0.7。以SRWC 26%分组作为对照(CK)。使用R语言4.0.2(R Core Team,2020)和Origin(Origin Lab Corporation,2019)进行数据分析和绘图。数据分析前利用R语言的MASS和car程序包对数据进行正态性和方差齐性检验,必要时进行数据转换以满足数据分布的正态性要求,对不满足方差齐性的指标采用R语言的userfriendlyscience程序包进行Games-Howell方差分析。

    • 随着SRWC下降,叶倾角逐渐减小(R2=0.97,P<0.001)。当SRWC下降至17%时,叶倾角与对照相比显著减小(从5.2° ± 0.4°降低至−8.4° ± 0.7°),当SRWC降至5%时,叶倾角达到最小值(−68.5° ± 6.7°)(P<0.01)(见图3)。

      图  3  渐进式干旱对叶倾角的影响

      Figure 3.  Effects of progressive drought on leaf droop angle

    • 随着SRWC下降,VK、VL、ABS/RC、DIO/RC和TRO/RC均呈增加趋势,其中ABS/RC在SRWC-5%时显著增加到CK的116.7%,表明随着干旱程度加剧,放氧复合体和PSII反应中心内的电子转移逐渐受到干扰,PSⅡ单位面积反应中心吸收、耗散和捕获的光能逐渐增加。RC/CSO、ETO/RC、REO/RC和PIABS均随SRWC下降而下降,当SRWC为5%时,RC/CSO和PIABS较CK分别显著减少了20.2%和36.6%,稳态叶绿素荧光指标QYmax随着SRWC降低而上升,而NPQ随之先增后降,均与CK无显著差异(图4)。

      图  4  渐进式干旱对叶绿素荧光参数的影响

      Figure 4.  Effects of progressive drought on chlorophyll fluorescence parameters

    • 随着SRWC降低,Pn、E、gs和Ci先升高,后逐渐降低。E和gs在SRWC-23%时分别升高至CK的134.6%(P<0.01)和138.6%(P<0.05)。gs从SRWC-14%开始显著降低,Pn、E和Ci从SRWC-11%时开始显著降低。WUE随SRWC降低而减少,SRWC-8%时极显著降低至CK的15.0%(图5)。

      图  5  渐进式干旱对气体交换参数的影响

      Figure 5.  Response of gas exchange parameters to progressive drought

    • 本研究发现渐进式干旱过程中,叶倾角在SRWC为17%时显著减小,至5%达到最小值;叶绿素荧光参数中PSII有活性的反应中心数量、PSII与PSI之间的能量传递和PSII光化学活性逐渐下降,但最大量子产额与非光化学猝灭所受影响较小;气体交换参数在SRWC低于20%时开始受到影响,低于11%时影响显著。

    • 将不同土壤含水量对应的光合作用参数进行[0,1]标准化(图6),从光合机构的结构变化、物质交换、能量流动3方面分析辽东栎幼树叶片光合系统对干旱的响应,发现其存在明显的4个阶段:第1阶段(26%>SRWC>20%),无胁迫发生,A、E、Ci、gs持续上升;第2阶段(20%>SRWC>14%),中度干旱胁迫,A、E、Ci、gs持续下降,WUE基本保持稳定;第3阶段(14%>SRWC>8%),重度干旱胁迫,WUE、PIABS、REO/RC开始大幅度下降。第4阶段(SRWC<8%),极度干旱胁迫,A、E、Ci、gs趋近于0。其响应机制如下所述。

      图  6  辽东栎育苗干旱胁迫水平及灌溉方案

      Figure 6.  Stress-levels scheme and irrigation schedule of Q. liaotungensis seedling cultivation

      通常认为,干旱胁迫会影响气孔开放程度、气体交换和PSⅡ运行效率[26-28]。无干旱胁迫时,SRWC下降导致了辽东栎幼树气孔导度(gs)和PSII光化学活性(PIABS)上升,叶倾角和PSⅡ单位面积有活性反应中心数量(RC/CSO)略有升高,虽然PSⅡ单位面积反应中心吸收(ABS/RC)和耗散的光能(DIO/RC)下降,但叶片光合能力仍然维持较高水平,表明此阶段尚未发生干旱胁迫。此阶段还观察到,单位反应中心用于将电子从Q− A传递到PSⅠ的能量(REO/RC)下降。已有研究表明,干旱胁迫会导致PSI受体侧的电子传递和量子产额下降[28]。鉴于此,REO/RC降低可能源于该参数对土壤含水量降低相对敏感。当感应到土壤含水量下降后,PSII立即通过降低向PSⅠ传输的电子效率,以避免未及时固定的电子与氧分子结合形成活性氧(ROS)[29]

      中度干旱胁迫时,辽东栎幼树关闭的气孔增多,但光合机构的能量流动未受明显影响,仅阻碍了CO2(Pn和Ci)和水(E)的物质交换,因此WUE仍维持较高水平。这一阶段的典型表现是gs显著下降和PSII的正常运转,这可能因为气孔限制被启动的SRWC阈值较非气孔限制高。该现象印证了前人关于气孔导度对干旱发生的敏感程度比叶绿素荧光参数高的论断[30]。此阶段还观察到WUE逐渐增加,类似现象已有报道[31],可能由于作为一种相对温和的干旱胁迫反应,自然状态下会频繁发生气孔关闭,WUE对此已经脱敏。为了确保有充足的电子在PSII和PSI之间传递能量,所以WUE不降反增。

      重度干旱胁迫时,尽管PSII的能量吸收(ABS/RC)和热耗散(DIO/RC)开始增加,但在能量传输方面,PSII光化学活性(PIABS)及传递到PSI受体侧的能量(REO/RC)开始下降;在物质交换方面,水和CO2的流通进一步受到抑制;在结构方面,RC/CSO、叶倾角、gs急剧减少。这一阶段主要的变化是光合机构结构和能量流通的改变,源于非气孔降低了植物的光合能力。具体而言:首先,叶绿素荧光参数变化明显,表明PSII结构遭到破坏[32],因为重度干旱导致PSII捕获的光能与CO2还原利用的光能失衡,多余的电子与氧分子结合形成ROS,极易造成类囊体膜上的蛋白复合物受损;其次,WUE开始下降,这一现象可能与抗旱能力的种间差异有关;第三,叶片萎蔫逐渐加速,主要由于水份缺乏致使细胞膨胀压力下降。

      极度干旱胁迫时,结构方面,叶片迅速下垂,RC/CSO和气孔导度趋近于零;在物质交换方面,叶片与环境间的H2O和CO2流动逐渐停止;在能量方面,PSII吸收和耗散的能量增加,而能量传递却迅速下降至0(PIABS和REO/RC)。此阶段叶绿素荧光参数的变化最为明显,反映出极度干旱胁迫对叶片光合机构造成了严重损伤,导致PSII受体和供体侧的电子供应失衡。在此阶段还观察到ABS/RC急速上升,Manaa等人也发现了类似现象[33],这可能是植物的胁迫应激反应,缓解PSII反应中心的大量关闭和电子转运速率的大幅下降。

      在水分紧缺的情况下,植株幼苗的耗水量减少,可以维持较高的WUE[34]。本研究发现,SRWC介于14%至26%之间时,WUE、光合作用的固碳能力(Pn)和PSII的光利用效率(PIABS)均没有显著变化,表明中度干旱对辽东栎幼树的水分利用效率和生产力没有明显影响。当缺少灌溉水时,适度减少用水量仍然能获得较高的辽东栎幼树生长量。

    • 辽东栎幼树叶倾角对土壤干旱的响应存在阶段性差异,将叶倾角与光合参数的变化趋势匹配(图7),可发现:当叶倾角为−14.0° ± 1.7°时,气孔闭合量增加;当叶倾角为−43.2° ± 10.3°时,WUE显著降低,此时需要灌溉;当叶倾角为−68.5° ± 6.7°时,光合机构受到严重破坏,此时必须立即灌溉。通过叶倾角检测干旱胁迫程度的方法具有观测便捷、成本较低的优势,但需要考虑拍照时风速对叶倾角的干扰。

      图  7  渐进式干旱对辽东栎光合作用影响的叶倾角预测模型

      Figure 7.  Leaf droop angle prediction model for the effects of progressive drought on photosynthesis of Q. liaotungensis

      评估干旱胁迫程度的常用方法为监测SRWC,但测量程序繁琐费时。利用植物生理指标检测干旱胁迫具有测量速度快和结果精准的优势。已有研究将ABS/RC[35]、DIO/RC[36]、RC/CSO和PIABS[37]做为检测植物干旱胁迫程度的指标。我们的研究发现辽东栎幼树叶片的这些参数在重度和极端干旱胁迫下变化明显,可作为严重干旱胁迫发生的预警指标。

    • 综上所述,辽东栎幼树叶片遭受渐进式干旱胁迫时,光合系统的气体交换变化最显著,其次是叶倾角,最后是PSII的电子传递和能量耗散。干旱胁迫下光合系统的响应可划分为4个阶段:(1)无干旱胁迫,叶片结构稳定,物质交换正常;(2)中度干旱胁迫,叶倾角降低、气孔的结构开始闭合,水和CO2的物质交换逐渐减少,但尚能高效的利用土壤水分;(3)重度干旱胁迫,结构变化持续,物质交换和能量流动受阻,土壤水分利用效率降低;(4)极度干旱胁迫,光合系统的结构变化、物质交换和能量流通均趋于停止。据此,本研究筛选出灌溉的预警指标—叶倾角,以及叶片的致死预警指标—RCO/CS、ABS/RC、DIO/RC、PIABS。这一结论可为制定辽东栎育苗的高效灌溉方案提供理论依据和数据支持。

参考文献 (37)

目录

    /

    返回文章
    返回