• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广西大青山西南桦人工林土壤养分特征及其与立地生产力的关系

唐诚 王春胜 庞圣江 王欢 曾杰

引用本文:
Citation:

广西大青山西南桦人工林土壤养分特征及其与立地生产力的关系

    作者简介: 唐诚(1978-), 男, 甘肃靖远人, 博士, 讲师, 主要从事森林培育及经营的教学与研究.E-mail:tangcheng1983@163.com.
    通讯作者: 曾杰, zengj69@caf.ac.cn
  • 基金项目:

    国家重点研发计划课题"西南桦高效培育技术研究" 2016YFD0600604

  • 中图分类号: S714

Assessing Soil Nutrient Status and Its Relationship with Site Productivity of Betula alnoides Plantations in Daqingshan Mountains, Guangxi

    Corresponding author: ZENG Jie, zengj69@caf.ac.cn
  • CLC number: S714

  • 摘要: 目的 探讨西南桦人工林对土壤的适应性及土壤养分特征, 揭示土壤养分状况与立地生产力的关系, 为其造林地选择及人工林养分管理提供参考。 方法 在广西大青山林区西南桦人工林内设置47块600 m2的典型样地, 调查常规测树因子, 采集土壤样品, 测定10项常规土壤化学性质指标; 按照土壤养分分级标准评价土壤养分状况, 基于立地指数将样地分为高产和低产组, 进一步比较分析两组立地间各养分指标的差异性, 探讨土壤养分对立地生产力的影响。 结果 表明:广西大青山西南桦人工林地土壤绝大部分为强酸性, 有机质、有效N、全N含量中等偏上, 有效P甚缺, 其它养分含量中等偏下。高产和低产立地间土壤有机质和全K含量均呈极显著差异(P < 0.01), 有效N含量差异显著(P < 0.05)。 结论 西南桦对于低pH值、低P含量的土壤具有较强的适应性; 有机质、全K和有效N含量是影响广西大青山西南桦人工林立地指数的关键土壤养分因子。
  • 表 1  西南桦人工林样地概况

    Table 1.  General situations of the plots in Betula alnoides plantations

    样地号
    Plot No
    林龄
    Age/a
    海拔
    Altitude/m
    SA SP SG/(°) SI
    b1 14 670 SHA U 28.0 20
    b2 14 670 SHA U 16.0 18
    b3 14 670 SHA U 28.0 18
    b4 17 460 SSHA M 36.0 20
    b5 17 460 SSHA M 37.0 24
    b6 17 455 SSHA M 39.0 22
    b7 17 564 SSUN M 14.0 20
    b8 17 485 SUN M 31.0 18
    b9 17 485 SUN M 32.0 16
    b10 17 390 SSUN L 37.0 18
    b11 17 390 SSUN L 28.0 18
    b12 17 400 SUN M 22.0 16
    b13 17 400 SUN L 28.0 20
    b14 17 405 SUN L 34.0 22
    f1 14 460 SSUN L 39.0 22
    f2 14 460 SHA L 34.0 26
    f3 14 460 SHA L 26.0 24
    f4 14 460 SHA L 24.0 26
    f7 24 600 SSUN U 36.0 22
    f8 24 600 SHA U 32.0 18
    f9 24 600 SHA U 42.0 20
    f11 13 640 SUN U 28.0 16
    f12 13 640 SUN U 31.0 20
    f13 13 640 SSUN M 32.0 28
    f14 13 640 SHA U 37.0 20
    f15 13 640 SSHA U 34.0 22
    f16 15 440 SSUN M 31.0 18
    f18 15 440 SSUN M 31.0 18
    f21 16 480 SHA M 28.0 20
    f23 16 480 SHA M 32.0 20
    q1 12 230 SHA U 14.0 18
    q2 12 230 SHA U 9.0 18
    q3 12 230 SHA U 23.0 18
    q4 13 190 SHA U 15.0 18
    q5 13 190 SHA U 22.0 20
    q6 13 190 SHA U 26.0 18
    q7 20 260 SSUN U 23.0 20
    q8 20 240 SSUN U 21.0 18
    q9 20 250 SUN U 25.0 20
    q10 20 250 SUN U 21.0 20
    q11 20 250 SUN U 21.0 18
    q12 20 240 SUN U 18.0 18
    q14 12 523 SSUN M 37.0 16
    q15 12 500 SSUN M 37.0 16
    q16 12 550 SSUN M 34.0 20
    q17 12 550 SUN M 32.0 22
    q18 12 550 SUN M 31.0 20
    注:SA、SP、SG、SI分别表示坡向、坡位、坡度和立地指数;b、f、q分别表示白云、伏波和青山实验场;SUN、SSUN、SHA、SSHA分别表示阳坡、半阳坡、半阴坡和阴坡;U、M、L分别表示上、中和下坡位。
    Note:SA, SP, SG, SI represent slope aspect, slope position, slope gradient and site index; b, f, and q represent Baiyun, Fubo and Qingshan Experimental Stations; SUN, SSUN, SHA and SSHA represent sunny, semi-sunny, shade and semi-shade slopes; and U, M and L represent upper, middle and lower slopes, respectively.
    下载: 导出CSV

    表 2  广西大青山中高海拔35个西南桦人工林样地的立地分组

    Table 2.  Site group division for 35 plots in Betula alnoides plantations of medium to high altitudes at Daqing Mountain, Guangxi

    立地分组
    Site groups
    样地数
    Plot number
    样地号
    Plots code
    立地指数(均值SD)
    SI (Mean SD)
    显著性
    Sig.
    HPS 11 b5, b6, b14, f1, f2, f3, f4, f7, f13, f15, f17 23.64±2.16
    LPS 24 b1, b2, b3, b4, b7, b8, b9, b10, b11, b12, b13, f8, f9, f11, f12, f14, f16, f18, f21, f23, q14, q15, q16, q18 18.50±1.59 0.000
    注:HPS和LPS分别表示高产和低产立地,下同。
    Note: HPS and LPS represent site with high and low productivity, respectively. The same below.
    下载: 导出CSV

    表 3  广西大青山西南桦人工林47个样地土壤化学性质特征

    Table 3.  Chemical properties of soils in 47 sampling plots of Betula alnoides plantations at Daqing Mountain, Guangxi

    因子
    Regimes
    最小值
    Min
    最大值
    Max
    均值
    Mean
    标准差
    S.D
    变异系数CV
    pH (H2O) 3.93 4.67 4.21 0.19 0.04
    OM /(g·kg-1) 16.54 89.40 37.60 13.87 0.37
    AN /(mg·kg-1) 64.38 324.27 134.61 52.36 0.39
    AP /(mg·kg-1) 0.78 2.24 1.38 0.36 0.28
    AK/ (mg·kg-1) 6.27 89.66 44.64 21.22 0.48
    TN /(g·kg-1) 0.68 2.91 1.52 0.43 0.28
    TP/ (g·kg-1) 0.11 0.69 0.34 0.13 0.37
    TK/ (g·kg-1) 0.76 15.78 4.58 4.65 1.02
    EMg /(cmol·kg-1) 0.07 1.03 0.27 0.18 0.66
    AAL/ (g·kg-1) 15.77 57.75 35.22 12.54 0.36
    注:OM、AN、AP、AK、TN、TP、TK、EMg、AAL分别表示有机质、有效N、有效P、速效K、全N、全P、全K、交换性Mg和活性Al含量;下同。
    Note: OM, AN, AP, AK, TN, TP, TK, EMg and AAL refer to contents of organic matter, available nitrogen, available phosphorus, available potassium, total nitrogen, total phosphorus, total potassium, exchangeable magnesium and active aluminum, respectively. The same below.
    下载: 导出CSV

    表 4  广西大青山西南桦人工林土壤养分指标分布频率

    Table 4.  Frequency distribution of soil nutrients in sampling plots of Betula alnoides plantations at Daqing Mountain, Guangxi

    %
    项目Item 丰Rich 高High 中Middle 低Low 缺Deficient 甚缺More deficient
    pH (H2O) (碱Alkali)0 (微碱Subalkaline)0 (中性Neutral)0 (微酸Micro acid)0 (酸Acid)8.5 (强酸Strongly acid)91.5
    OM 38.3 29.8 29.8 2.1 0.0 0.0
    AN 34.1 17.0 31.9 17.0 0.0 0.0
    AP 0.0 0.0 0.0 0.0 0.0 100.0
    AK 0.0 0.0 0.0 27.7 51.1 21.3
    TN 6.4 42.6 42.6 6.4 2.1 0.0
    TP 0.0 0.0 2.1 31.9 53.2 12.8
    TK 0.0 0.0 4.3 14.9 10.6 70.2
    EMg 0.0 0.0 2.1 14.9 38.3 44.7
    下载: 导出CSV

    表 5  高产与低产立地间土壤养分特征差异比较

    Table 5.  Comparison of soil nutrient status at high and low productivity sites

    指标
    Index
    立地分组
    Site group
    均值
    Mean
    标准差
    SD
    t 显著性
    Sig.
    pH(H2O) LPS
    HPS
    4.14
    4.19
    0.18
    0.19
    -0.825 0.416
    OM/(g·kg-1) LPS
    HPS
    31.70
    45.72
    6.51
    14.67
    3.018 0.005
    AN/(mg·kg-1) LPS
    HPS
    116.33
    157.77
    27.49
    62.28
    2.102 0.043
    AP/(mg·kg-1) LPS
    HPS
    1.46
    1.45
    0.36
    0.42
    0.058 0.954
    AK /(mg·kg-1) LPS
    HPS
    41.18
    56.90
    22.20
    26.40
    -1.833 0.076
    TN/(g·kg-1) LPS
    HPS
    1.40
    1.66
    0.26
    0.53
    1.545 0.132
    TP/(g·kg-1) LPS
    HPS
    0.38
    0.33
    0.14
    0.11
    1.048 0.302
    TK/(g·kg-1) LPS
    HPS
    1.68
    3.12
    0.86
    2.26
    -2.765 0.009
    EMg/(cmol·kg-1) LPS
    HPS
    0.21
    0.20
    0.12
    0.12
    0.168 0.868
    AAL/(g·kg-1) LPS
    HPS
    42.06
    37.12
    8.92
    11.38
    1.396 0.172
    下载: 导出CSV
  • [1]

    Nohrstedt H. Response of coniferous forest ecosystems on mineral soils to nutrient additions:A review of Swedish experiences[J]. Scandinavian Journal of Forest Research, 2001, 16(6):555-573. doi: 10.1080/02827580152699385
    [2]

    Scholten T, Goebes P, Kühn P, et al. On the combined effect of soil fertility and topography on tree growth in subtropical forest ecosystems-a study from SE China[J]. Journal of Plant Ecology, 2017, 10(1):111-127. doi: 10.1093/jpe/rtw065
    [3]

    Yasin K, Ali B M, Ouz H. Relationship of tree height with soil properties, soil and needle nutrients in cedar (Cedrus libani A. Rich.) plantations[J]. Research Journal of Biotechnology, 2014, 9(7):60-68.
    [4]

    Yu C B, Chen F, Luo Z J, et al. Evaluation of soil nutrient status in poplar forest soil by soil nutrient systematic approach[J]. Journal of Forestry Research, 2004, 15(4):298-300. doi: 10.1007/BF02844957
    [5]

    Pietrzykowski M, Socha J, Doorn N S V. Scots pine (Pinus sylvestris L.) site index in relation to physico-chemical and biological properties in reclaimed mine soils[J]. New Forests, 2015, 46(2):247-266. doi: 10.1007/s11056-014-9459-z
    [6]

    Bravo F, Montero G. Site index estimation in Scots pine (Pinus sylvestris L.) stands in the High Ebro Basin (northern Spain) using soil attributes[J]. Forestry, 2001, 74(4):395-406. doi: 10.1093/forestry/74.4.395
    [7]

    Bergès L, Chevalier R, Dumas Y, et al. Sessile oak (Quercus petraea Liebl.) site index variations in relation to climate, topography and soil in even-aged high-forest stands in northern France[J]. Annals of Forest Science, 2005, 62(5):391-402. doi: 10.1051/forest:2005035
    [8]

    Kim H, Jeong S H, Kam D G, et al. Developing a site index model considering soil characteristics for Pinus thunbergii stands grown on the west coast of Korea[J]. Journal of the Korean Society for Applied Biological Chemistry, 2013, 56(2):173-180. doi: 10.1007/s13765-012-3255-2
    [9]

    Afif-Khouri E, Cámara Obregón M A, Oliveira-Prendes J A, et al. Relationship among soil parameters, tree nutrition and site index of Pinus radiata D. Don in Asturias, NW Spain[J]. Forest Systems, 2010, 19(1):77-88. doi: 10.5424/fs/2010191-01169
    [10]

    Blyth J F, Macleod D A. Sitka spruce (Picea sitchensis) in north-east Scotland. Ⅰ. Relationships between site factors and growth[J]. Forestry, 1981, 54(1):41-62. doi: 10.1093/forestry/54.1.41
    [11]

    Ford E W, Farr W A, Chien L P. Preliminary analysis of four soil variables and their relation to site index of Sitka spruce in southeast Alaska[C]//Slaughter C W, Gasbarro T. Proceedings of the Alaska Forest Soil Productivity Workshop. Anchorage, AK, April 28-301988. General Technical Report, PNW-219. USDA. Pacific North Western Research and Experimental Station, 1988: 84-89.
    [12]

    Farrelly N, Dhubháin A' N, Nieuwenhuis M. Sitka spruce site index in response to varying soil moisture and nutrients in three different climate regions in Ireland[J]. Forest Ecology and Management, 2011, 262(12):2199-2206. doi: 10.1016/j.foreco.2011.08.012
    [13]

    Wang C S, Zhao Z G, Hein S, et al. Effect of planting density on knot attributes and branch occlusion of Betula alnoides under natural pruning in southern China[J]. Forests, 2015, 6(4):1343-1361.
    [14] 国家林业局.森林土壤分析方法[S].北京: 中国标准出版社, 2000.

    [15] 全国土壤普查办公室, 全国第二次土壤普查暂行技术规程[S].北京: 农业出版社, 1979.

    [16] 唐诚.西南桦人工林生长模拟及立地质量评价[D].北京: 中国林业科学研究院, 2017.

    [17] 曾杰, 郑海水, 翁启杰.我国西南桦的地理分布与适生条件[J].林业科学研究, 1999, 12(05):479-484. doi: 10.3321/j.issn:1001-1498.1999.05.006

    [18]

    Li W, Johnson C E. Relationships among pH, aluminum solubility and aluminum complexation with organic matter in acid forest soils of the Northeastern United States[J]. Geoderma, 2016, 271:234-242. doi: 10.1016/j.geoderma.2016.02.030
    [19] 黄丽媛, 袁军, 吴泽龙, 等.油茶林地土壤铝的含量和化学形态分析[J].经济林研究, 2016, 34(3):79-83.

    [20] 杨继镐.广西南部林地土壤与适生树种[M].北京:中国林业出版社, 1995.

    [21] 杨承栋.我国人工林土壤有机质的量和质下降是制约林木生长的关键因子[J].林业科学, 2016, 52(12):1-12. doi: 10.11707/j.1001-7488.20161201

    [22]

    Tian Y, Takanashi K, Toda H, et al. pH and substrate regulation of nitrogen and carbon dynamics in forest soils in a karst region of the upper Yangtze River basin, China[J]. Journal of Forest Research, 2013, 18(3):228-237. doi: 10.1007/s10310-012-0341-6
    [23] 戴万宏, 黄耀, 武丽, 等.中国地带性土壤有机质含量与酸碱度的关系[J].土壤学报, 2009, 46(5):851-860. doi: 10.3321/j.issn:0564-3929.2009.05.013

    [24]

    Curtin D, Peterson M E, Anderson C R. pH-dependence of organic matter solubility:Base type effects on dissolved organic C, N, P, and S in soils with contrasting mineralogy[J]. Geoderma, 2016, 271:161-172. doi: 10.1016/j.geoderma.2016.02.009
    [25]

    Lu Y H, Sit P, Hung T F, et al. Regression models for impact of soil properties on site index class of Scots pine (Pinus sylvestris L.) stands in south-western Poland[J]. Sylwan, 2012, 156(8):563-571.
    [26]

    Subedi S, Fox T R. Predicting loblolly pine site index from soil properties using partial least-squares regression[J]. Forest Science, 2016, 62(4):449-456, doi: 10.5849/forsci.15-127
    [27]

    Wang G G. White spruce site index in relation to soil, understory vegetation, and foliar nutrients[J]. Canadian Journal of Forest Research, 2011, 25(1):29-38.
    [28] 贝昭贤, 张秋芳, 郑蔚, 等.模拟增温对中亚热带杉木人工林土壤磷有效性的影响[J].生态学报, 2017, 38(3):1-8. doi: 10.3969/j.issn.1673-1182.2017.03.001

    [29]

    Wang G G, Huang S M, Monserud R A, et al. Lodgepole pine site index in relation to synoptic measures of climate, soil moisture and soil nutrients[J]. Forestry Chronicle, 2004, 80(6):678-686. doi: 10.5558/tfc80678-6
    [30]

    Brown J H. Growth and site index of white pine in relation to soils and topography in the glaciated areas of Ohio[J]. Northern Journal of Applied Forestry, 2007, 24(2):98-103.
    [31]

    Sharma R P, Brunner A, Eid T. Site index prediction from site and climate variables for Norway spruce and Scots pine in Norway[J]. Scandinavian Journal of Forest Research, 2012, 27(7):619-636. doi: 10.1080/02827581.2012.685749
  • [1] 商添雄韩海荣程小琴蔡锰柯李斌张雯雯 . 华北落叶松人工林生长对抚育间伐的响应及其与土壤因子的关系. 林业科学研究, 2019, 32(6): 40-47. doi: 10.13275/j.cnki.lykxyj.2019.06.006
    [2] 郑曼陈永富 . 桉树短周期工业原料林立地指数模型研究. 林业科学研究, 2008, 21(3): 415-418.
    [3] 陈少雄王观明修贵金罗建中罗林文杨瑶青 . 广西丘陵台地巨尾桉、尾叶桉(实生)地位指数表的编制*. 林业科学研究, 1995, 8(2): 177-181.
    [4] 陈永富杨彦臣张怀清杨秀森李大江 . 海南岛热带天然山地雨林立地质量评价研究. 林业科学研究, 2000, 13(2): 134-140.
    [5] 李清雪朱雅娟贾志清王永胜于洋 . 沙丘不同部位中间锦鸡儿人工林土壤养分特性及植物群落特征. 林业科学研究, 2014, 27(5): 677-682.
    [6] 马姜明李昆 . 元谋干热河谷人工林的土壤养分效应及其评价. 林业科学研究, 2006, 19(4): 467-471.
    [7] 叶桂艳 . 12种优良用材树种幼林期在不同立地上的适应性. 林业科学研究, 1990, 3(1): 86-89.
    [8] 孙翠玲郭玉文郭泉水 . 日本落叶松人工林重茬林地土壤养分含量变化及其对林木生长的影响. 林业科学研究, 1997, 10(3): 321-324.
    [9] 赵雪梅王海燕孙向阳邹妍康向阳 . 三倍体毛白杨无性系人工林林地土壤养分消耗与林木生长研究. 林业科学研究, 2008, 21(3): 419-423.
    [10] 聂道平 . 不同立地条件的杉木人工林生产力和养分循环*. 林业科学研究, 1993, 6(6): 643-649.
    [11] 徐耀文姜仲茂武锋杨倩梨廖宝文 . 翠亨湿地无瓣海桑人工林土壤有机碳分布特征及与土壤理化指标相关性. 林业科学研究, 2020, 33(1): 62-68. doi: 10.13275/j.cnki.lykxyj.2020.01.008
    [12] 王鹤松张劲松孟平高峻贾长荣 . 华北山区非主要生长季典型人工林土壤呼吸变化特征. 林业科学研究, 2007, 20(6): 820-825.
    [13] 潘勇军王兵陈步峰陈进史欣李汉强 . 短轮伐期桉树人工林土壤温度特征分析. 林业科学研究, 2011, 24(3): 404-409.
    [14] 张虹于姣妲李海洋张燕林潘菲周垂帆刘爱琴 . 不同栽植代数杉木人工林土壤磷素特征研究. 林业科学研究, 2021, 34(1): 10-18. doi: 10.13275/j.cnki.lykxyj.2021.01.002
    [15] 彭紫薇焦鹏宇高李文郭文刘先胡亚林王玉哲 . 不同林龄杉木人工林土壤氮转化酶活性特征. 林业科学研究, 2022, 35(2): 104-111. doi: 10.13275/j.cnki.lykxyj.2022.02.012
    [16] 雷丽群卢立华农友明安刚刘士玲何远 . 不同林龄马尾松人工林土壤碳氮磷生态化学计量特征. 林业科学研究, 2017, 30(6): 954-960. doi: 10.13275/j.cnki.lykxyj.2017.06.010
    [17] 王继永王文全刘勇 . 林药间作系统中药用植物光合生理适应性规律研究. 林业科学研究, 2003, 16(2): 129-134.
    [18] 李希菲王明亮黄旺志 . 利用线性模型检验杉木不同种源立地指数曲线模型的通用性. 林业科学研究, 1999, 12(5): 505-509.
    [19] 陈竣李贻铨陈道东张瑛巫流民纪建书 . 杉木人工林土壤磷素形态及其有效性研究. 林业科学研究, 1996, 9(2): 121-126.
    [20] 焦如珍杨承栋屠星南盛炜彤 . 杉木人工林不同发育阶段林下植被、土壤微生物、酶活性及养分的变化. 林业科学研究, 1997, 10(4): 373-379.
  • 加载中
表(5)
计量
  • 文章访问数:  3487
  • HTML全文浏览量:  1288
  • PDF下载量:  383
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-05
  • 刊出日期:  2018-04-01

广西大青山西南桦人工林土壤养分特征及其与立地生产力的关系

    通讯作者: 曾杰, zengj69@caf.ac.cn
    作者简介: 唐诚(1978-), 男, 甘肃靖远人, 博士, 讲师, 主要从事森林培育及经营的教学与研究.E-mail:tangcheng1983@163.com
  • 1. 石河子大学农学院, 新疆 石河子 832003
  • 2. 中国林业科学研究院热带林业研究所, 广东 广州 510520
  • 3. 中国林业科学研究院热带林业实验中心, 广西 凭祥 536000
基金项目:  国家重点研发计划课题"西南桦高效培育技术研究" 2016YFD0600604

摘要:  目的 探讨西南桦人工林对土壤的适应性及土壤养分特征, 揭示土壤养分状况与立地生产力的关系, 为其造林地选择及人工林养分管理提供参考。 方法 在广西大青山林区西南桦人工林内设置47块600 m2的典型样地, 调查常规测树因子, 采集土壤样品, 测定10项常规土壤化学性质指标; 按照土壤养分分级标准评价土壤养分状况, 基于立地指数将样地分为高产和低产组, 进一步比较分析两组立地间各养分指标的差异性, 探讨土壤养分对立地生产力的影响。 结果 表明:广西大青山西南桦人工林地土壤绝大部分为强酸性, 有机质、有效N、全N含量中等偏上, 有效P甚缺, 其它养分含量中等偏下。高产和低产立地间土壤有机质和全K含量均呈极显著差异(P < 0.01), 有效N含量差异显著(P < 0.05)。 结论 西南桦对于低pH值、低P含量的土壤具有较强的适应性; 有机质、全K和有效N含量是影响广西大青山西南桦人工林立地指数的关键土壤养分因子。

English Abstract

  • 土壤养分影响林木生长、林分生产力[1-2]。在土耳其地中海地区,黎巴嫩雪松(Cedrus libani Rich.)的树高与土壤pH值呈负相关,而与土壤Mn、Cu和K含量呈正相关[3];湖北江汉平原栽培的杨树,其胸径和树高生长受土壤Zn和N含量的显著影响[4]。在用材林造林决策和经营管理过程中,获取最大的立地生产力是重要的目标之一[5]。立地指数常作为评价立地生产力大小的指标[6],其受土壤养分的影响因树种而异:如无梗花栎(Quercus petraea (Mattuschka) Liebl.)的立地指数与土壤Mg、S含量以及K/P2O5和Mg/K密切相关,而与C/N相关不显著[7];韩国西海岸生长的黑松(Pinus thunbergii Parl.),其立地指数受土壤Ca-P含量的显著影响[8];西班牙西北部土壤速效K含量与辐射松(P. radiata D. Don)立地指数间呈显著正相关[9]。对于同一树种而言,影响立地指数的养分因子因栽培区域而异:如苏格兰东北部的北美云杉(Picea sitchensis (Bong.) Carrière),其立地指数受表层土壤全N和全P含量的显著影响[10];而在阿拉斯加东南部,土壤有机C含量与北美云杉立地指数间呈显著正相关[11]。研究土壤养分与立地指数间的关系对于造林决策、无林地立地生产力估算等具有重要意义[12]

    西南桦(Betula alnoides Buch.-Ham. ex D. Don)是热带、南亚热带地区的一个速生珍贵用材树种,其木材材质优良,用途广泛,市场需求大。目前,西南桦在广西、云南等省区均大规模种植,其人工林面积已逾15.0万hm2[13]。在西南桦人工林快速发展过程中,由于立地选择不当、经营管理粗放等诸多原因,造成大量西南桦林分生产力低下。尽管影响西南桦林分生产力的因素复杂多样,林地土壤养分状况无疑是一个至关重要的因素。广西大青山林区为西南桦栽培最早的地区,本研究以其西南桦人工林为研究对象,设置典型样地开展林木生长调查与土壤养分测定,系统分析其林地土壤养分状况,探讨西南桦的土壤适应性,揭示土壤养分与立地生产潜力间的关系,为西南桦造林地选择、养分管理提供参考。

    • 研究区位于广西凭祥市中国林业科学研究院热带林业实验中心(106°47′53′ E, 22°02′06′ N),属南亚热带季风气候区,年均气温19.521.5℃,年降水量1 2001 550 mm,干湿季分明,每年4月至9月为雨季,10月至翌年3月为干季,相对湿度基本在80%以上。研究区海拔190680 m,土壤类型主要为砖红壤性红壤和红壤。

    • 考虑不同年龄、坡向、坡位等因素,在热带林业实验中心的青山、白云和伏波3个实验场西南桦人工林内分别设置17、14、16块600 m2的典型样地,并进行海拔、坡向等立地因子调查及常规生长测定。各样地的地形因子和林分年龄见表 1

      表 1  西南桦人工林样地概况

      Table 1.  General situations of the plots in Betula alnoides plantations

      样地号
      Plot No
      林龄
      Age/a
      海拔
      Altitude/m
      SA SP SG/(°) SI
      b1 14 670 SHA U 28.0 20
      b2 14 670 SHA U 16.0 18
      b3 14 670 SHA U 28.0 18
      b4 17 460 SSHA M 36.0 20
      b5 17 460 SSHA M 37.0 24
      b6 17 455 SSHA M 39.0 22
      b7 17 564 SSUN M 14.0 20
      b8 17 485 SUN M 31.0 18
      b9 17 485 SUN M 32.0 16
      b10 17 390 SSUN L 37.0 18
      b11 17 390 SSUN L 28.0 18
      b12 17 400 SUN M 22.0 16
      b13 17 400 SUN L 28.0 20
      b14 17 405 SUN L 34.0 22
      f1 14 460 SSUN L 39.0 22
      f2 14 460 SHA L 34.0 26
      f3 14 460 SHA L 26.0 24
      f4 14 460 SHA L 24.0 26
      f7 24 600 SSUN U 36.0 22
      f8 24 600 SHA U 32.0 18
      f9 24 600 SHA U 42.0 20
      f11 13 640 SUN U 28.0 16
      f12 13 640 SUN U 31.0 20
      f13 13 640 SSUN M 32.0 28
      f14 13 640 SHA U 37.0 20
      f15 13 640 SSHA U 34.0 22
      f16 15 440 SSUN M 31.0 18
      f18 15 440 SSUN M 31.0 18
      f21 16 480 SHA M 28.0 20
      f23 16 480 SHA M 32.0 20
      q1 12 230 SHA U 14.0 18
      q2 12 230 SHA U 9.0 18
      q3 12 230 SHA U 23.0 18
      q4 13 190 SHA U 15.0 18
      q5 13 190 SHA U 22.0 20
      q6 13 190 SHA U 26.0 18
      q7 20 260 SSUN U 23.0 20
      q8 20 240 SSUN U 21.0 18
      q9 20 250 SUN U 25.0 20
      q10 20 250 SUN U 21.0 20
      q11 20 250 SUN U 21.0 18
      q12 20 240 SUN U 18.0 18
      q14 12 523 SSUN M 37.0 16
      q15 12 500 SSUN M 37.0 16
      q16 12 550 SSUN M 34.0 20
      q17 12 550 SUN M 32.0 22
      q18 12 550 SUN M 31.0 20
      注:SA、SP、SG、SI分别表示坡向、坡位、坡度和立地指数;b、f、q分别表示白云、伏波和青山实验场;SUN、SSUN、SHA、SSHA分别表示阳坡、半阳坡、半阴坡和阴坡;U、M、L分别表示上、中和下坡位。
      Note:SA, SP, SG, SI represent slope aspect, slope position, slope gradient and site index; b, f, and q represent Baiyun, Fubo and Qingshan Experimental Stations; SUN, SSUN, SHA and SSHA represent sunny, semi-sunny, shade and semi-shade slopes; and U, M and L represent upper, middle and lower slopes, respectively.

      在每个样地的对角线上设置3个5 m×5 m的样方,每个样方挖取1个土壤剖面,取030 cm土壤约1 kg带回实验室,按国家林业局土壤养分分析标准制样并测定土壤pH值及有机质、全N、全P、全K、有效N、有效P、速效K、交换性Mg、活性Al的含量[14]

    • 依据全国第二次土壤普查养分分级标准进行土壤养分分级[15]

    • 每个样地的立地指数来自文献[16]中的“广西热林中心西南桦人工林立地指数表”。根据样地调查资料,每个样地选取5株优势木或亚优势木求其平均高,查表获得其立地指数(表 1)。

      西南桦喜温凉气候,偏低海拔立地会因为温度高而影响西南桦生长[17],由表 1亦可以看出,海拔小于300 m的11个样地,其立地指数普遍偏小。300 m以上海拔较适宜西南桦生长,因此,在分析土壤养分特征与立地生产力的关系时仅针对海拔300 m以上的样地。35个样地的立地指数介于16 m与28 m之间,其均值约为20 m。据此将立地分为两类:大于20为高产组,小于或等于20为低产组(表 2)。采用独立样本t检验比较高产组和低产组之间各土壤养分的均值及其差异显著性。数据处理与分析均采用SPSS 22.0软件进行。

      表 2  广西大青山中高海拔35个西南桦人工林样地的立地分组

      Table 2.  Site group division for 35 plots in Betula alnoides plantations of medium to high altitudes at Daqing Mountain, Guangxi

      立地分组
      Site groups
      样地数
      Plot number
      样地号
      Plots code
      立地指数(均值SD)
      SI (Mean SD)
      显著性
      Sig.
      HPS 11 b5, b6, b14, f1, f2, f3, f4, f7, f13, f15, f17 23.64±2.16
      LPS 24 b1, b2, b3, b4, b7, b8, b9, b10, b11, b12, b13, f8, f9, f11, f12, f14, f16, f18, f21, f23, q14, q15, q16, q18 18.50±1.59 0.000
      注:HPS和LPS分别表示高产和低产立地,下同。
      Note: HPS and LPS represent site with high and low productivity, respectively. The same below.
    • 依据全国第二次土壤普查养分分级标准,广西大青山西南桦人工林地土壤为强酸性;其有机质、有效N、全N含量高;速效K、全P、交换性Mg缺乏;有效P、全K甚缺(表 3)。各土壤化学性质指标变异系数的变化范围为0.041.02,pH值的变异性最弱,全K含量的变异性最强(表 3)。

      表 3  广西大青山西南桦人工林47个样地土壤化学性质特征

      Table 3.  Chemical properties of soils in 47 sampling plots of Betula alnoides plantations at Daqing Mountain, Guangxi

      因子
      Regimes
      最小值
      Min
      最大值
      Max
      均值
      Mean
      标准差
      S.D
      变异系数CV
      pH (H2O) 3.93 4.67 4.21 0.19 0.04
      OM /(g·kg-1) 16.54 89.40 37.60 13.87 0.37
      AN /(mg·kg-1) 64.38 324.27 134.61 52.36 0.39
      AP /(mg·kg-1) 0.78 2.24 1.38 0.36 0.28
      AK/ (mg·kg-1) 6.27 89.66 44.64 21.22 0.48
      TN /(g·kg-1) 0.68 2.91 1.52 0.43 0.28
      TP/ (g·kg-1) 0.11 0.69 0.34 0.13 0.37
      TK/ (g·kg-1) 0.76 15.78 4.58 4.65 1.02
      EMg /(cmol·kg-1) 0.07 1.03 0.27 0.18 0.66
      AAL/ (g·kg-1) 15.77 57.75 35.22 12.54 0.36
      注:OM、AN、AP、AK、TN、TP、TK、EMg、AAL分别表示有机质、有效N、有效P、速效K、全N、全P、全K、交换性Mg和活性Al含量;下同。
      Note: OM, AN, AP, AK, TN, TP, TK, EMg and AAL refer to contents of organic matter, available nitrogen, available phosphorus, available potassium, total nitrogen, total phosphorus, total potassium, exchangeable magnesium and active aluminum, respectively. The same below.

      表 3亦发现:大部分养分含量的最小值和最大值相差几倍至十几倍,仅以均值并不能全面反映出林地土壤各养分丰缺程度。进一步分析各样地土壤养分含量的分布频率(表 4)可知:90%以上样地属于强酸性土壤;绝大部分样地的土壤有机质、有效N、全N含量处于中等偏上水平;所有样地土壤有效P甚缺,全P、全K、速效K、交换性Mg含量中等偏下。

      表 4  广西大青山西南桦人工林土壤养分指标分布频率

      Table 4.  Frequency distribution of soil nutrients in sampling plots of Betula alnoides plantations at Daqing Mountain, Guangxi

      %
      项目Item 丰Rich 高High 中Middle 低Low 缺Deficient 甚缺More deficient
      pH (H2O) (碱Alkali)0 (微碱Subalkaline)0 (中性Neutral)0 (微酸Micro acid)0 (酸Acid)8.5 (强酸Strongly acid)91.5
      OM 38.3 29.8 29.8 2.1 0.0 0.0
      AN 34.1 17.0 31.9 17.0 0.0 0.0
      AP 0.0 0.0 0.0 0.0 0.0 100.0
      AK 0.0 0.0 0.0 27.7 51.1 21.3
      TN 6.4 42.6 42.6 6.4 2.1 0.0
      TP 0.0 0.0 2.1 31.9 53.2 12.8
      TK 0.0 0.0 4.3 14.9 10.6 70.2
      EMg 0.0 0.0 2.1 14.9 38.3 44.7
    • 表 5可知:高产和低产组两类立地间土壤有机质和全K含量呈极显著差异(P<0.01),有效N含量差异显著(P<0.05),速效K含量在0.1水平上差异显著(P=0.076),其它养分指标均差异不显著(P≥0.05)。

      表 5  高产与低产立地间土壤养分特征差异比较

      Table 5.  Comparison of soil nutrient status at high and low productivity sites

      指标
      Index
      立地分组
      Site group
      均值
      Mean
      标准差
      SD
      t 显著性
      Sig.
      pH(H2O) LPS
      HPS
      4.14
      4.19
      0.18
      0.19
      -0.825 0.416
      OM/(g·kg-1) LPS
      HPS
      31.70
      45.72
      6.51
      14.67
      3.018 0.005
      AN/(mg·kg-1) LPS
      HPS
      116.33
      157.77
      27.49
      62.28
      2.102 0.043
      AP/(mg·kg-1) LPS
      HPS
      1.46
      1.45
      0.36
      0.42
      0.058 0.954
      AK /(mg·kg-1) LPS
      HPS
      41.18
      56.90
      22.20
      26.40
      -1.833 0.076
      TN/(g·kg-1) LPS
      HPS
      1.40
      1.66
      0.26
      0.53
      1.545 0.132
      TP/(g·kg-1) LPS
      HPS
      0.38
      0.33
      0.14
      0.11
      1.048 0.302
      TK/(g·kg-1) LPS
      HPS
      1.68
      3.12
      0.86
      2.26
      -2.765 0.009
      EMg/(cmol·kg-1) LPS
      HPS
      0.21
      0.20
      0.12
      0.12
      0.168 0.868
      AAL/(g·kg-1) LPS
      HPS
      42.06
      37.12
      8.92
      11.38
      1.396 0.172
    • 以往的调查结果表明,西南桦天然分布区土壤呈酸性至微酸性,pH值为4.26.5[17]; 而本研究中,广西大青山西南桦人工林地土壤pH值为3.94.7,绝大部分为强酸性土壤。可见,西南桦对酸性土壤的适应性强。当土壤逐渐酸化时,土壤铝会从固相释放进入土壤溶液或以交换性铝吸附于土壤表面的阳离子交换位上[18],pH值影响土壤Al的可溶性,从而影响林木生长[19],因而,西南桦人工林土壤活性Al含量与pH值呈显著负相关,西南桦对酸性土壤的强适应性亦某种程度上反映出其对活性铝具有较强的适应性。

      广西大青山西南桦人工林地全P、全K、速效K、交换性Mg缺乏,尤以有效P缺乏更甚。这可能与林地土壤类型有关。青山和白云实验场多为砂泥岩和中酸性火山岩发育的红壤,伏波则以花岗岩风化母质发育的红壤为主[20],这些类型土壤由于pH值低,土壤中有效养分易流失,盐基流失亦加快,土壤胶体表面正电荷相应增加,增强了对P的吸附,导致土壤有效P缺乏[21]

      土壤pH值通过影响林地土壤微生物活动,进而影响土壤N的矿化[22]。本研究中,西南桦人工林土壤pH值低,但土壤全N、有效N含量为中上水平,与戴万宏等[23]对我国地带性土壤的研究结果一致;而Curtin等[24]认为,绝大部分土壤有机质是比较固定的,仅小部分为可分解有机质,pH值与有机质含量呈正相关。土壤微生物大多适宜在中性土壤中生长,pH值下降,固N微生物活性亦下降,从而影响土壤N素系列代谢活动,含N有机物数量下降,使土壤有机质的量和质均下降[21]

    • 土壤各养分因子与目标树种立地指数间的关系复杂[6, 25-26]。影响立地指数的土壤养分因子因树种而异,土壤pH值以及K、N、CaCO3影响波兰西南部欧洲赤松(Pinus sylvestris L.)立地指数大小[25];在哥伦比亚,土壤全N、矿质N、有效P和S含量影响白云杉(Picea glauca (Moench) Voss)的立地指数[27]。本研究通过高产和低产立地间的对比分析发现,有机质、有效N、全K含量是影响广西大青山西南桦立地指数的关键土壤养分因子。尽管有效P含量低是我国亚热带地区森林生态系统生产力的一个重要限制因子[28],然而,本研究中有效P对西南桦生长的差异性未能显现,究其原因,其一、属局域尺度研究,其土壤具有强酸和低P的共性特征,换言之,所有样地均呈现有效P缺乏(表 4);其二、西南桦对有效P含量低的土壤具有较强的适应;其三、一些重要因子,如土壤物理性质以及其他未测土壤化学因子的干扰,亦可能影响研究结果。究竟有效P含量是否为西南桦生长的限制因子,尚需在更大尺度上进行深入研究予以证明。

      在较大尺度上,除土壤因子外,气候、地形等因子影响树种的立地指数[5, 12, 29-31]。如Bergès等[7]对无梗花栎的研究得出,气候、地形和土壤因子可解释其立地指数49%60%的变异;Farrelly等[12]研究北美云杉立地指数的影响因子时发现,气候区、风速、水分和养分供应等因子均有显著影响,但程度不同,如气候区和风速分别可解释立地指数变化的12%和37%。因此,在未来西南桦人工林研究中,还需增加其它方面的因子,诸如气候、地形、土壤物理性质以及叶片养分等,从各尺度上进行分析研究,系统揭示立地因子与立地指数间的关系,为西南桦人工林立地选择与经营管理提供科学依据和技术支撑。

    • 广西大青山西南桦人工林地土壤普遍具有pH值和有效P含量低的特点,说明西南桦对此类土壤具有较强的适应性。有机质、全K和有效N含量是影响广西大青山西南桦人工林立地指数的关键土壤养分因子。因此,在该区域营建速生丰产林时应选择pH值较高的土壤,避免因土壤酸性较强影响土壤性质,造成土壤有机质、全K、有效N等养分含量下降和不足,影响西南桦林正常生长。

参考文献 (31)

目录

    /

    返回文章
    返回