• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

日本落叶松LaSPL2LaSPL3在体细胞胚发育中的表达分析

范艳如 兰倩 韩素英 齐力旺 张立峰

引用本文:
Citation:

日本落叶松LaSPL2LaSPL3在体细胞胚发育中的表达分析

    作者简介: 范艳如,在读博士. Email:fanyanru3115@163.com.
    通讯作者: 张立峰, zhanglifeng1029@caf.ac.cn
  • 中图分类号: S791.223

Expression of SPL-like Gene LaSPL2 and LaSPL3 in Japanese Larch (Larix leptolepis) During Somatic Embryogenesis

    Corresponding author: ZHANG Li-feng, zhanglifeng1029@caf.ac.cn
  • CLC number: S791.223

  • 摘要: 目的 通过研究LaSPL2LaSPL3的分子特征和表达模式,揭示其在落叶松体细胞胚发育中的功能。 方法 利用同源克隆及RACE技术,获得LaSPL2LaSPL3的全长cDNA序列,通过生物信息学分析其编码蛋白保守结构域、进化关系等,利用烟草瞬时表达体系进行亚细胞定位研究,采用qRT-PCR检测2个基因在落叶松体细胞胚发育过程的表达模式。 结果 本研究获得了2个落叶松SPL同源基因LaSPL2LaSPL3,分别编码532个氨基酸和191个氨基酸,其cDNA序列均存在miR156识别位点。多序列比对分析发现:它们均具有保守的SBP结构域。亚细胞定位结果显示:LaSPL2LaSPL3定位于细胞核中。qRT-PCR结果表明:在落叶松体细胞胚发育早期,ABA下调LaSPL2LaSPL3表达;随着体细胞胚的进一步发育,LaSPL2LaSPL3的表达水平分别在10 d和14 d达到峰值;之后随着体细胞胚发育成熟,它们的转录水平逐渐下降,并在42 d达到最低值。 结论 通过分析ABA缺失对LaSPL2LaSPL3表达的影响,表明ABA可能是落叶松体细胞胚发育早期LaSPL2LaSPL3下调表达的主要因子;LaSPL2LaSPL3的表达量在体细胞胚发育的早期阶段均达到最高峰,表明它们可能是早期胚胎形成的一个重要调控因子;LaSPL2LaSPL3序列分析及表达模式,表明它们在体细胞胚发育中可能受miR156调控,并在体细胞胚的成熟过程中具有重要意义。
  • 图 1  落叶松LaSPL2LaSPL3预测的miR156结合位点(A)和序列比对(B)

    Figure 1.  Predicted miR156 position in LaSPL2 and LaSPL3 (A) and alignment of miR156 and LaSPL2 and LaSPL3 transcript sequences (B)

    图 2  落叶松LaSPL2和LaSPL3与AtSPLs序列比对

    Figure 2.  ClustalX 2.1 alignment of the deduced protein sequence encoded by the Japanese larch (Larix leptolepis) LaSPL2 and LaSPL3 and the proteins encoded by the members of the Arabidopsis thaliana SPL family regulated by miR156.

    图 3  落叶松LaSPL2LaSPL3AtSPLs的系统发育分析

    Figure 3.  Phylogenetic analysis of LaSPL2 and LaSPL3 and the Arabidopsis thalianaSPL family members.

    图 4  落叶松LaSPL2和LaSPL3亚细胞定位

    Figure 4.  Subcellular localization ofLaSPL2 and LaSPL3

    图 5  落叶松体细胞胚胎发生早期LaSPL2 (A、B)和LaSPL3(C、D)对ABA(A、 C)和ABA缺失(B、D)的应答模式

    Figure 5.  Accumulation of LaSPL2 (A, B)and LaSPL3 (C, D)transcripts in ABA-treated (A, C) and no ABA-treated ESMs (B, D) ESMs during the early somatic embryogenesis stage.

    图 6  落叶松体细胞胚发育过程中LaSPL2 (A) 和LaSPL3 (B)的表达模式

    Figure 6.  Expression patterns of LaSPL2 (A) and LaSPL3 (B) during somatic embryogenesis.

    表 1  PCR扩增引物序列

    Table 1.  Oligonucleotide primers used for PCR in the study

    引物名称
    Primer name
    序列 (5′–3′)
    Sequence (5′–3′)
    用途
    Application
    LaSPL2-F CTCACTGGCAATAAACCC LaSPL2 PCR扩增
    LaSPL2-R AAGACCTCAACAACTGCG PCR amplificationfor LaSPL2
    3′ RLaSPL2-1 GTGGCATTGGAAACTTTGGAGGAC LaSPL2 的3′ Race 扩增
    3′ RLaSPL2-2 CGCAGGTCCTCAGAAACACAAAG 3′ Race of LaSPL2
    5′ RLaSPL2-1 GAGGATTGGGAGCAGATTGTCAGT LaSPL2 的5′ Race 扩增
    5′ RLaSPL2-2 GAGAGCACACCCAGAGTCCGAGA 5′ Race of LaSPL2
    3′ RLaSPL3-1 CTCCAGCAACGCTTCTGTCAGCA LaSPL3 的3′ Race 扩增
    3′ RLaSPL3-2 CCCTCTGATTCACCAGTTGACAG 3′ Race of LaSPL3
    5′ RLaSPL3-1 CTGCTACATTGCTGACAGAAGCGT LaSPL3 的5′ Race 扩增
    5′ RLaSPL3-2 CAAACCCTGTGCCTCCTGTAGTA 5′ Race of LaSPL3
    SLaSPL2-F CCCAAGCTTATGCTGTTTTCAGGCAACACC LaSPL2基因ORF扩增
    SLaSPL2-R GGACTAGTCAGCAATTGATGAGTGTCATA LaSPL2 ORF amplification
    SLaSPL3-F CCCAAGCTTATGGACGAAGTCGAAGTCAAG LaSPL3基因ORF扩增
    SLaSPL3-R GGACTAGTATGATTCTTTATTTCCTTGC LaSPL3 ORF amplification
    qLaSPL2-F GCTCCCAATCCTCTACTAATCT LaSPL2荧光定量引物
    qLaSPL2-R CAGCCTGAGAACCTCTGAA Real-time PCR for LaSPL2
    qLaSPL3-F TGACAAGATGACAATGGTGC LaSPL3荧光定量引物
    qLaSPL3-R TGAAGAGAGATGAACTCAGGG Real-time PCR for LaSPL3
    下载: 导出CSV
  • [1] 李 明, 李长生, 赵传志, 等. 植物SPL转录因子研究进展[J]. 植物学报, 2013, 48(1):107-116.

    [2] 雷凯健, 刘 浩. 植物调控枢纽miR156及其靶基因SPL家族研究进展[J]. 生命的化学, 2016, 36(1):13-20.

    [3]

    Rhoades M W, Reinhart B J, Lim L P, et al. Prediction of plant microRNA targets[J]. Cell, 2002, ; 110(4): 513-520.
    [4]

    Wang H, Wang H. The miR156/SPL Module, a Regulatory Hub and Versatile Toolbox, Gears up Crops for Enhanced Agronomic Traits[J]. Molecular Plant, 2015, 8(5): 677-688. doi: 10.1016/j.molp.2015.01.008
    [5]

    Guo A-Y, Zhu Q-H, Gu X, et al. Genome-wide identification and evolutionary analysis of the plant specific SBP-box transcription factor family[J]. Gene., 2008, 418(1-2): 1-8. doi: 10.1016/j.gene.2008.03.016
    [6]

    Schwarz S, Grande AV, Bujdoso N, et al. The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis[J]. Plant Molecular Biology, 2008, 67(1-2): 183-195. doi: 10.1007/s11103-008-9310-z
    [7]

    Xing S, Salinas M, Höhmann S, et al. miR156-targeted and nontargeted SBP-box transcription factors act in concert to secure male fertility in Arabidopsis[J]. Plant Cell, 2010, 22(12): 3935-3950.
    [8]

    Xu M, Hu T, Zhao J, et al. Developmental Functions of miR156-Regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) Genes in Arabidopsis thaliana[J]. PLoS Genetics, 2016, 12(8): e1006263. doi: 10.1371/journal.pgen.1006263
    [9]

    Cui L-G, Shan J-X, Shi M, et al. The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants[J]. the Plant Journal, 2014, 80(6): 1108-1117. doi: 10.1111/tpj.12712
    [10]

    Ding D, Zhang L, Wang H, et al. Differential expression of miRNAs in response to salt stress in maize roots[J]. Annals of Botany, 2009, 103(1): 29-38. doi: 10.1093/aob/mcn205
    [11]

    Ferreira e Silva GF, Silva EM, Azevedo M da S, et al. microRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development[J]. the Plant Journal, 2014, 78(4): 604-618. doi: 10.1111/tpj.12493
    [12]

    Gou J Y, Felippes F F, Liu C J, et al. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor[J]. Plant Cell, 2011, 23(4): 1512-1522. doi: 10.1105/tpc.111.084525
    [13]

    Jiao Y, Wang Y, Xue D, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nature Genetics, 2010, 42(6): 541-544. doi: 10.1038/ng.591
    [14]

    Miura K, Ikeda M, Matsubara A, et al. OsSPL14 promotes panicle branching and higher grain productivity in rice[J]. Nature Genetics, 2010, ; 42(6): 545-549.
    [15]

    Sun G, Stewart C N Jr., Xiao P, et al. MicroRNA expression analysis in the cellulosic biofuel crop switchgrass (Panicum virgatum) under abiotic stress[J]. PLoS One, 2012, 7(3): e32017. doi: 10.1371/journal.pone.0032017
    [16]

    Wang Y, Wang Z, Amyot L, et al. Ectopic expression of miR156 represses nodulation and causes morphological and developmental changes in Lotus japonicus[J]. Molecular Genetics and Genomics, 2015, 290(2): 471-484. doi: 10.1007/s00438-014-0931-4
    [17]

    Wang J-W, Czech B, Weigel D. miR156-Regulated SPL Transcription Factors Define an Endogenous Flowering Pathway in Arabidopsis thaliana[J]. Cell, 2009, 138(4): 738-749. doi: 10.1016/j.cell.2009.06.014
    [18]

    Wang Y, Wu F, Bai J, et al. BrpSPL9 (Brassica rapa ssp. pekinensis SPL9) controls the earliness of heading time in Chinese cabbage[J]. Plant Biotechnology Journal, 2014, 12(3): 312-321. doi: 10.1111/pbi.12138
    [19]

    Wu G, Park MY, Conway SR, et al. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis[J]. Cell, 2009, 138(4): 750-759. doi: 10.1016/j.cell.2009.06.031
    [20]

    Yu N, Cai W-J, Wang S, et al. Temporal control of trichome distribution by microRNA156-targeted SPL genes in Arabidopsis thaliana[J]. Plant Cell, 2010, 22(7): 2322-2335. doi: 10.1105/tpc.109.072579
    [21]

    Nodine M D, Bartel D P. MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis[J]. Genes & Development, 2010, 24(23): 2678-2692.
    [22]

    Long J M, Liu C Y, Feng M Q, et al. miR156-SPL modules regulate induction of somatic embryogenesis in citrus callus[J]. Journal of Experimental Botany, 2018, 69(12): 2979-2993. doi: 10.1093/jxb/ery132
    [23]

    Zhang J H, Zhang S G, Li S G, et al. Regulation of synchronism by abscisic-acid-responsive small noncoding RNAs during somatic embryogenesis in larch (Larix leptolepis)[J]. Plant Cell, Tissue Organ Culture, 2014, 116(3): 361-370. doi: 10.1007/s11240-013-0412-1
    [24]

    Zhang J, Zhang S, Han S, et al. Deciphering small noncoding RNAs during the transition from dormant embryo to germinated embryo in larches (Larix leptolepis)[J]. PLoS One, 2013, 8(12): e81452. doi: 10.1371/journal.pone.0081452
    [25]

    Zhang L, Li W, Xu H, et al. Cloning and characterization of four differentially expressed cDNAs encoding NFYA homologs involved in responses to ABA during somatic embryogenesis in Japanese larch (Larix leptolepis)[J]. Plant Cell, Tissue Organ Culture, 2014, 117(2): 293-304. doi: 10.1007/s11240-014-0440-5
    [26]

    Zhang J, Zhang S, Han S, et al. Genome-wide identification of microRNAs in larch and stage-specific modulation of 11 conserved microRNAs and their targets during somatic embryogenesis[J]. Planta, 2012, 236(2): 647-657. doi: 10.1007/s00425-012-1643-9
    [27]

    Li W F, Zhang S G, Han S Y, et al. Regulation of LaMYB33 by miR159 during maintenance of embryogenic potential and somatic embryo maturation in Larix kaempferi (Lamb.) Carr.[J]. Plant Cell, Tissue and Organ Culture, 2013, 113(1): 131-136. doi: 10.1007/s11240-012-0233-7
    [28]

    Li S, Li W, Han S, et al. Stage-specific regulation of four HD-ZIP III transcription factors during polar pattern formation in Larix leptolepis somatic embryos[J]. Gene, 2013, 522(2): 177-183. doi: 10.1016/j.gene.2013.03.117
    [29]

    Lu S, Sun Y H, Amerson H, et al. MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development[J]. the Plant Journal, 2007, 51(6): 1077-1098. doi: 10.1111/j.1365-313X.2007.03208.x
    [30]

    Zhang H, Zhang L, Han J, et al. The nuclear localization signal is required for the function of squamosa promoter binding protein-like gene 9 to promote vegetative phase change in Arabidopsis[J]. Plant Molecular Biology, 2019, 100(6): 571-578. doi: 10.1007/s11103-019-00863-5
    [31]

    Zhang L-f, Li W-f, Han S-y, et al. cDNA cloning, genomic organization and expression analysis during somatic embryogenesis of the translationally controlled tumor protein (TCTP) gene from Japanese larch (Larix leptolepis)[J]. Gene, 2013, 529(1): 150-158. doi: 10.1016/j.gene.2013.07.076
    [32]

    Gandikota M, Birkenbihl RP, Höhmann S, et al. The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings[J]. the Plant Journal., 2007, 49(4): 683-693. doi: 10.1111/j.1365-313X.2006.02983.x
    [33] 张立峰. 落叶松体细胞胚TCTPNFYA基因克隆及其在ABA调控过程中的表达机制[D]. 北京: 中国林业科学研究院, 2014.

    [34]

    Zhang S, Han S, Yang W, et al. Changes in H2O2 content and antioxidant enzyme gene expression during the somatic embryogenesis of Larix leptolepis[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2010, 100(1): 21-29. doi: 10.1007/s11240-009-9612-0
    [35]

    Yin H, Hong G, Li L, et al. miR156/SPL9 Regulates Reactive Oxygen Species Accumulation and Immune Response in Arabidopsis thaliana[J]. Phytopathology, 2019, 109(4): 632-642. doi: 10.1094/PHYTO-08-18-0306-R
    [36]

    Jin L, Yarra R, Zhou L, et al. miRNAs as Key Regulators Via Targeting the Phytohormone Signaling Pathways During Somatic Embryogenesis of Plants[J]. 3 Biotech, 2020, 10: 495.
    [37]

    Xu J. ATACing Somatic Embryogenesis[J]. Developmental Cell, 2020, 54(6): 689-690. doi: 10.1016/j.devcel.2020.09.008
    [38]

    Wójcik AM, Wójcikowska B, Gaj MD. Current Perspectives on the Auxin-Mediated Genetic Network that Controls the Induction of Somatic Embryogenesis in Plants[J]. International Journal of Molecular Sciences, 2020, 21(4): 1333. doi: 10.3390/ijms21041333
    [39]

    Wójcikowska B, Wójcik AM, Gaj MD. Epigenetic Regulation of Auxin-Induced Somatic Embryogenesis in Plants[J]. International Journal of Molecular Sciences, 2020, 21(7): 2307. doi: 10.3390/ijms21072307
    [40]

    Zhang L-f, Lan Q, Han S-y, et al. A GH3-like Gene, LaGH3, Isolated From Hybrid Larch (Larix leptolepis × Larix olgensis) is Regulated by Auxin and Abscisic Acid During Somatic Embryogenesis[J]. Trees, 2019, 33(12): 1723-1732.
    [41]

    Armenta Medina A, Lepe Soltero D, Xiang D, et al. Arabidopsis thaliana miRNAs promote embryo pattern formation beginning in the zygote[J]. Developmental Biology, 2017, 431(2): 145-151. doi: 10.1016/j.ydbio.2017.09.009
    [42]

    Plotnikova A, Kellner MJ, Schon MA, et al. MicroRNA Dynamics and Functions During Arabidopsis Embryogenesis[J]. Plant Cell, 2019, 31(12): 2929-2946. doi: 10.1105/tpc.19.00395
    [43] 张俊红, 张守攻, 吴 涛, 等. 落叶松体胚发育中5个miRNA前体与成熟体的表达[J]. 植物学报, 2012, 47(5):462-473.

  • [1] 李龙张立峰齐力旺韩素英 . 日本落叶松体细胞胚胎发生相关基因LaSERK1的克隆与表达分析. 林业科学研究, 2013, 26(6): 673-680.
    [2] 王菁李爱王春国宋文芹陈成彬 . 日本落叶松 UDPGDH基因的cDNA克隆和表达分析. 林业科学研究, 2013, 26(S1): 76-81.
    [3] 易敏张守攻谢允慧孙晓梅 . 日本落叶松咖啡酸-O-甲基转移酶基因 LkCOMT的克隆及单核苷酸多态性分析. 林业科学研究, 2013, 26(S1): 52-59.
    [4] 易敏张守攻谢允慧孙晓梅 . 日本落叶松纤维素合酶基因片段的克隆及单核苷酸多态性分析. 林业科学研究, 2015, 28(3): 303-310.
    [5] 张俊红吴涛韩素英齐力旺张守攻 . 落叶松体胚发育中12个针叶树特异microRNAs表达分析. 林业科学研究, 2012, 25(4): 411-418.
    [6] 单雪萌王思宁朱成磊高志民 . 毛竹 PeCPD 基因克隆与表达分析. 林业科学研究, 2019, 32(5): 58-66. doi: 10.13275/j.cnki.lykxyj.2019.05.008
    [7] 凌娟娟胡继文王军辉安三平王丽芳许娜朱天擎 . 干化对粗枝云杉体胚解剖结构及细胞壁重塑基因表达的影响. 林业科学研究, 2023, 36(6): 1-10. doi: 10.12403/j.1001-1498.20230157
    [8] 王江英范正琪殷恒福李辛雷吴斌李纪元 . 杜鹃红山茶CaAPX基因的克隆、表达及功能分析. 林业科学研究, 2016, 29(4): 471-479.
    [9] 安静万友名马宏刘雄芳张秀姣曹毓蓉李正红 . 地涌金莲MlCYP734A6基因的克隆与表达分析. 林业科学研究, 2021, 34(3): 37-45. doi: 10.13275/j.cnki.lykxyj.2021.03.004
    [10] 史倩倩周琳李奎王雁 . 云南野生黄牡丹PlbHLH3转录因子基因的克隆与表达. 林业科学研究, 2015, 28(4): 488-496.
    [11] 周亚楠李爱陈成彬王春国宋文芹 . 日本落叶松杂种及亲本 4CL基因的克隆和SNP多态性分析. 林业科学研究, 2013, 26(S1): 18-24.
    [12] 张婷丁贵杰文晓鹏 . 马尾松紫色酸性磷酸酶基因PmPAP1的克隆与表达模式分析. 林业科学研究, 2016, 29(6): 797-806.
    [13] 姜波高彩球王玉成于丽丽杨传平 . 刚毛柽柳富含甘氨酸RNA结合蛋白ThGRP1基因克隆与表达分析. 林业科学研究, 2011, 24(2): 256-262.
    [14] 余义勋张俊卫孙振元包满珠 . 香石竹ACC氧化酶基因的克隆与植物表达载体构建. 林业科学研究, 2002, 15(3): 256-260.
    [15] 宣磊王芝权殷云龙华建峰 . 中山杉406ThSHR3基因的克隆、表达及蛋白互作研究. 林业科学研究, 2021, 34(4): 32-39. doi: 10.13275/j.cnki.lykxyj.2021.04.004
    [16] 孙海涛杨玲齐力旺李万峰 . 日本落叶松胚状体干化处理对萌发的影响. 林业科学研究, 2024, 37(1): 1-6. doi: 10.12403/j.1001-1498.20230311
    [17] 刘英冠吴庆珂何关顺汪阳东杨素素陈益存高暝 . 山鸡椒1-脱氧木酮糖-5-磷酸还原异构酶 DXR基因的克隆和SNP分析. 林业科学研究, 2015, 28(1): 93-100.
    [18] 吴涛韩素英张俊红李万峰杨文华齐力旺 . 日本落叶松种子萌发过程中18个miRNAs的表达变化. 林业科学研究, 2013, 26(S1): 9-17.
    [19] 刘超张力鹏王春国宋文芹陈成彬 . 日本落叶松EST-SSR标记挖掘及特征分析. 林业科学研究, 2013, 26(S1): 60-68.
    [20] 董雷鸣张守攻孙晓梅 . 日本落叶松全双列交配生长性状的遗传分析. 林业科学研究, 2019, 32(4): 11-18. doi: 10.13275/j.cnki.lykxyj.2019.04.002
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  4437
  • HTML全文浏览量:  2291
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-04
  • 录用日期:  2021-07-18
  • 网络出版日期:  2021-07-31
  • 刊出日期:  2021-10-20

日本落叶松LaSPL2LaSPL3在体细胞胚发育中的表达分析

    通讯作者: 张立峰, zhanglifeng1029@caf.ac.cn
    作者简介: 范艳如,在读博士. Email:fanyanru3115@163.com
  • 1. 中国林业科学研究院林业研究所,林木遗传育种国家重点实验室,国家林业和草原局林木育种与培育重点实验室,北京 100091
  • 2. 中国林业科学研究院林业科技信息研究所,北京 100091
  • 3. 中国林业科学研究院森林生态环境与保护研究所,北京 100091

摘要:  目的 通过研究LaSPL2LaSPL3的分子特征和表达模式,揭示其在落叶松体细胞胚发育中的功能。 方法 利用同源克隆及RACE技术,获得LaSPL2LaSPL3的全长cDNA序列,通过生物信息学分析其编码蛋白保守结构域、进化关系等,利用烟草瞬时表达体系进行亚细胞定位研究,采用qRT-PCR检测2个基因在落叶松体细胞胚发育过程的表达模式。 结果 本研究获得了2个落叶松SPL同源基因LaSPL2LaSPL3,分别编码532个氨基酸和191个氨基酸,其cDNA序列均存在miR156识别位点。多序列比对分析发现:它们均具有保守的SBP结构域。亚细胞定位结果显示:LaSPL2LaSPL3定位于细胞核中。qRT-PCR结果表明:在落叶松体细胞胚发育早期,ABA下调LaSPL2LaSPL3表达;随着体细胞胚的进一步发育,LaSPL2LaSPL3的表达水平分别在10 d和14 d达到峰值;之后随着体细胞胚发育成熟,它们的转录水平逐渐下降,并在42 d达到最低值。 结论 通过分析ABA缺失对LaSPL2LaSPL3表达的影响,表明ABA可能是落叶松体细胞胚发育早期LaSPL2LaSPL3下调表达的主要因子;LaSPL2LaSPL3的表达量在体细胞胚发育的早期阶段均达到最高峰,表明它们可能是早期胚胎形成的一个重要调控因子;LaSPL2LaSPL3序列分析及表达模式,表明它们在体细胞胚发育中可能受miR156调控,并在体细胞胚的成熟过程中具有重要意义。

English Abstract

  • SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL) 是植物中广泛存在且特有的一类转录因子,具有高度保守的SBP结构域,该结构域包含2个Zn2+结合位点和1个核定位信号序列[1-2]。拟南芥(Arabidopsis thaliana (L.) Heynh.)17个SPL家族成员中,11个基因是miR156的靶基因[3]SPL基因家族成员的编码区或3′非编码区(UTR)中miR156的识别位点非常保守[4]。系统发育分析表明,这些SPL基因分为5组,分别为AtSPL3AtSPL3AtSPL4AtSPL5)、AtSPL9AtSPL9AtSPL15)、AtSPL2AtSPL2AtSPL10AtSPL11)、AtSPL6AtSPL13[5-7]。根据其在拟南芥中的功能,上述SPL基因划分为三组:(1)AtSPL9AtSPL15AtSPL2AtSPL10AtSPL11AtSPL13与营养和生殖阶段的转变相关,其中,AtSPL9AtSPL15AtSPL13起着最重要的作用;(2)AtSPL3AtSPL4AtSPL5促进花分生组织特性的转变;(3)AtSPL6影响某些生理过程[8]。众多研究表明,miR156/SPL调控系统影响植物的多种生物学过程,包括营养和生殖阶段的转变、叶毛发育、分蘖/分枝、果实成熟、胁迫反应、胚胎发育和花青素生物合成等[8-20]。拟南芥DICER-LIKE1DCL1)突变体的八细胞胚胎时期,miR156的2个靶基因AtSPL10AtSPL11上调最高[21]。过表达csi-miR156a或单独敲除2个靶基因CsSPL3CsSPL14,可以显著提高柑橘愈伤组织的体细胞胚发生能力[22]。上述研究表明,miR156/SPL调控系统可能参与植物的胚胎发育。

    落叶松(Larix spp.)体细胞胚体系的建立为现代分子育种技术进行遗传改良奠定了基础,也是研究植物胚胎发育及细胞全能性的理想实验材料。针对落叶松体细胞胚再生体系中,诸如胚性细胞诱导困难、体细胞胚同步化发育、生根率低等问题,选取落叶松原胚ESMs(embryonal-suspensor mass)、单胚和子叶胚材料,利用基因芯片、高通量测序和qRT-PCR等技术,通过预测与分析鉴定了许多已知和未知的MicroRNAs及其靶基因[23-26],根据其表达模式研究[25, 27-28],证明了miRNAs作为调控因子,参与了落叶松体细胞胚的发育过程,其中,发现miR156表达次高峰出现在早期子叶胚,最高峰在后期子叶胚[26]。另外,还发现miR156在同步胚中的表达远高于非同步胚[23]。上述研究表明,miR156的表达调控可能在落叶松体细胞胚发生过程中起重要作用。

    为了阐明miR156/SPL调控系统在落叶松体细胞胚发育中的作用,笔者克隆了2个SPL基因的cDNA序列,将其命名为LaSPL2LaSPL3。通过生物信息学分析及亚细胞定位研究,结合其在落叶松体细胞胚发育中的表达模式,揭示miR156如何调节靶向SPLs基因的表达,进而调控体细胞胚的发育进程。

    • 以日本落叶松(Larix kaempferi (Lamb.) Carr)胚性细胞系S287为试验材料,于黑暗条件下22 ± 2℃培养,每3周继代1次。挑取一部分继代培养3周的材料并迅速放入液氮冷冻,用于总RNA提取和基因克隆;将另一部分ESMs分为两组,一组转到成熟培养基,并在诱导后0、2、5、7、10、14、21、28、35、42 d取材,共取10个时期;另一组转到ABA缺失的成熟培养基,分别在0、2、5 d取材,置于−80℃冰箱备用。

    • 落叶松各组织总RNA,参照TaKaRa的Fruit-mate™ for RNA Purification说明书提取。取1 μg总RNA,按照TransScript® II All-in-One First-Strand cDNA Synthesis SuperMix for PCR反转录试剂盒操作说明书合成cDNA。研究表明,火炬松(Pinus taeda Linn.)TC68758和TC75581可能是miR156的靶基因[29]。根据TC68758序列设计引物LaSPL2-F/LaSPL2-R,从落叶松中扩增到947 bp的同源序列;将TC75581作为种子序列,搜索到1条落叶松同源序列(JR171955)。根据上述获得的2条落叶松同源序列,设计4组引物:3′RLaSPL2-1/3′ RLaSPL2-2、5′ RLaSPL2-1/5′ RLaSPL2-2、3′ RLaSPL3-1/3′ RLaSPL3-2、5′ RLaSPL3-1/5′ RLaSPL3-2(表1),用于RACE克隆LaSPL2LaSPL3的全长cDNA序列(参照Clontech公司的SMARTer RACE 5′ /3′ Kit说明书进行)。

      表 1  PCR扩增引物序列

      Table 1.  Oligonucleotide primers used for PCR in the study

      引物名称
      Primer name
      序列 (5′–3′)
      Sequence (5′–3′)
      用途
      Application
      LaSPL2-F CTCACTGGCAATAAACCC LaSPL2 PCR扩增
      LaSPL2-R AAGACCTCAACAACTGCG PCR amplificationfor LaSPL2
      3′ RLaSPL2-1 GTGGCATTGGAAACTTTGGAGGAC LaSPL2 的3′ Race 扩增
      3′ RLaSPL2-2 CGCAGGTCCTCAGAAACACAAAG 3′ Race of LaSPL2
      5′ RLaSPL2-1 GAGGATTGGGAGCAGATTGTCAGT LaSPL2 的5′ Race 扩增
      5′ RLaSPL2-2 GAGAGCACACCCAGAGTCCGAGA 5′ Race of LaSPL2
      3′ RLaSPL3-1 CTCCAGCAACGCTTCTGTCAGCA LaSPL3 的3′ Race 扩增
      3′ RLaSPL3-2 CCCTCTGATTCACCAGTTGACAG 3′ Race of LaSPL3
      5′ RLaSPL3-1 CTGCTACATTGCTGACAGAAGCGT LaSPL3 的5′ Race 扩增
      5′ RLaSPL3-2 CAAACCCTGTGCCTCCTGTAGTA 5′ Race of LaSPL3
      SLaSPL2-F CCCAAGCTTATGCTGTTTTCAGGCAACACC LaSPL2基因ORF扩增
      SLaSPL2-R GGACTAGTCAGCAATTGATGAGTGTCATA LaSPL2 ORF amplification
      SLaSPL3-F CCCAAGCTTATGGACGAAGTCGAAGTCAAG LaSPL3基因ORF扩增
      SLaSPL3-R GGACTAGTATGATTCTTTATTTCCTTGC LaSPL3 ORF amplification
      qLaSPL2-F GCTCCCAATCCTCTACTAATCT LaSPL2荧光定量引物
      qLaSPL2-R CAGCCTGAGAACCTCTGAA Real-time PCR for LaSPL2
      qLaSPL3-F TGACAAGATGACAATGGTGC LaSPL3荧光定量引物
      qLaSPL3-R TGAAGAGAGATGAACTCAGGG Real-time PCR for LaSPL3
    • 利用NCBI ORF Finder (https://www.ncbi.nlm.nih.gov/orffinder/),搜索LaSPL2LaSPL3的开放阅读框(ORF),并分析其氨基酸序列及UTR,鉴定miR156的识别位点;用ClustalX 2.1(https://clustalx.software.informer.com/2.1/),将推导的LaSPL2和LaSPL3氨基酸序列与拟南芥AtSPLs比对;利用EXPASY-PROSITE(http://prosite.expasy.org/)对其特征序列进行预测;通过MEGAX,采用邻接法构建系统发育树。

    • 通过EXPASY-PSORT(http://psort.hgc.jp/)预测LaSPL2LaSPL3亚细胞定位情况。根据LaSPL2LaSPL3 cDNA序列,设计引物并添加限制性酶切位点(表1),用于ORF的PCR扩增。用T4连接酶连接目的片段和pSuper1300-GFP。对阳性克隆鉴定并测序以确保序列的正确性。将融合表达载体构建完成后转入农杆菌GV3101,挑取阳性菌到LB培养基,其中含有25 μg·mL−1利福平(Rif)、40 μg·mL−1卡那霉素(Kan)、30 μg·mL−1庆大霉素(Gen),28℃振荡培养,最佳OD600为0.6~0.8;然后在4℃,6 000 g的条件下将菌液离心10 min,用转化液10 mmol·L−1氯化镁(MgCl2),10 mmol·L−12-(N-吗啡啉)-乙基磺酸(MES),pH 5.7,200 μmol·L−1乙酰丁香酮(AS)重悬菌体,室温条件下放置3 h。用小型注射器将重悬菌液注入烟草叶片,置于培养箱内培养2 d。取部分烟草叶片,置于1 μg·mL−14′,6-二脒基-2-苯基吲哚(DAPI)溶液中浸泡,分别于405 nm和488 nm观察DAPI染色和GFP融合蛋白的表达情况。

    • 根据LaSPL2LaSPL3序列比对结果,设计2对引物qLaSPL2-F/qLaSPL2-R、qLaSPL3-F/qLaSPL3-R(表1)。通过PCR扩增,将LaSPL2LaSPL3的目的条带进行测序并验证其准确性。利用CFX96荧光定量PCR仪检测LaSPL2LaSPL3在落叶松体细胞胚不同发育阶段的表达水平,使用的试剂盒为TaKaRa SYBR Premix Ex TaqTM kit,内参基因为LaEF1A1(GenBank accession: JR153706)[26]

    • 火炬松中预测了2条miR156的靶基因序列TC68758和TC75581[29]。根据TC68758序列设计引物LaSPL2-F/LaSPL2-R,进行RT-PCR扩增,从落叶松中扩增到947 bp的同源序列,并在落叶松转录组中搜索到TC75581的同源序列JR171955。4组RACE扩增的引物是以上述2条落叶松的同源序列为模板,经过2轮巢式PCR,分别获得了287、1268、365和755 bp。经序列组装后获得了2条全长cDNA序列,并分别命名为LaSPL2 (GenBank Accession No.: MN315910)和LaSPL3 (GenBank Accession No.: MN315911)。经NCBI ORF finder搜索发现,LaSPL2LaSPL3分别编码532个和191个氨基酸,预测蛋白分子量分别为57 213.77、21 726.37 Da,等电点分别为8.90、9.33。进一步分析发现,LaSPL2LaSPL3 mRNA中均存在miR156识别位点(图1),其中,LaSPL2的识别位点位于编码区,而LaSPL3位于3′UTR区域,表明其可能受miR156的调控。

      图  1  落叶松LaSPL2LaSPL3预测的miR156结合位点(A)和序列比对(B)

      Figure 1.  Predicted miR156 position in LaSPL2 and LaSPL3 (A) and alignment of miR156 and LaSPL2 and LaSPL3 transcript sequences (B)

      从UniProt数据库搜集拟南芥AtSPLs家族成员的蛋白序列,并将其与推导的蛋白序列进行比对。结果表明,LaSPL2和LaSPL3具有非常保守的SBP结构域(ZF_SBP,Zinc finger SBP-type profile)(图2)。通过EXPASY-PROSITE搜索,氨基酸序列124-201[LaSPL2,V(124)PRCQVEGCKTELTTAKDYHRRHKVCELHSKSPKVIVNGIEQRFCQQCSRFHILSEFDEGKRSCRRRLAGHNERRRKP(201)]、65-142[LaSPL3,A(65)PSCQVEKCAADLADAKEYYRRHRVCEQHSKARIVLVLGLQQRFCQQCSRFHELEEFDEAKRSCRRRLAGHNERRRKT(142)],与SBP结构域的典型特征序列(C-x4-C-x16-C-x2-[HC]-x15-C-x2-C-x3-H-x11-C)相匹配,证明其具有SPL家族蛋白的特征序列。

      图  2  落叶松LaSPL2和LaSPL3与AtSPLs序列比对

      Figure 2.  ClustalX 2.1 alignment of the deduced protein sequence encoded by the Japanese larch (Larix leptolepis) LaSPL2 and LaSPL3 and the proteins encoded by the members of the Arabidopsis thaliana SPL family regulated by miR156.

      利用MEGAX,构建了SPL蛋白家族的系统发育树(图3)。结果表明,LaSPL2LaSPL3分别与拟南芥的AtSPL2/10/11AtSPL3/4/5最相似。拟南芥中AtSPL2AtSPL10、和AtSPL11 与营养和生殖阶段的转变相关,而AtSPL3AtSPL4AtSPL5与花分生组织的转变相关 [8]。因此在基因的结构和功能上,推测LaSPL2LaSPL3分别与AtSPL2AtSPL3具有相似性。

      图  3  落叶松LaSPL2LaSPL3AtSPLs的系统发育分析

      Figure 3.  Phylogenetic analysis of LaSPL2 and LaSPL3 and the Arabidopsis thalianaSPL family members.

    • 前人研究表明,拟南芥AtSPLs定位于细胞核[30]。ExPASy-PSORT预测LaSPL2和LaSPL3定位于细胞核。为了明确其在细胞中发挥功能的具体部位,引物在LaSPL2LaSPL3 ORF两端设计,并添加Hind III和Spe I酶切位点(表1),用于扩增其ORF序列;用T4连接酶将PCR产物和pSuper1300-GFP连接,构建pSuper1300-LaSPL2-GFP和pSuper1300-LaSPL3-GFP融合表达载体。将序列正确的表达载体,转入农杆菌GV3101,空质粒pSuper1300-GFP作为阴性对照(C)。用注射器将农杆菌重悬液注入烟草叶片,将其置于培养箱内继续培养2 d。取部分烟草叶片,置于1 μg·mL−1 DAPI溶液中浸泡,用激光共聚焦扫描显微镜在488 nm观察GFP的绿色荧光信号,并在405 nm下观察DAPI染细胞核的蓝色荧光信号。LaSPL2-GFP和LaSPL3-GFP仅在细胞核内观察到有绿色荧光信号,而对照则呈现弥散的荧光信号(图4)。表明LaSPL2和LaSPL3是核定位蛋白,与其作为转录因子的功能相一致。

      图  4  落叶松LaSPL2和LaSPL3亚细胞定位

      Figure 4.  Subcellular localization ofLaSPL2 and LaSPL3

    • 为了研究LaSPL2LaSPL3在胚胎发育中的作用,检测了其在落叶松体细胞胚发育过程的表达模式。当ESMs转接到成熟培养基后,在植物生长调节剂(PGRs)的撤除和ABA共同作用下,促进了早期胚胎的形成。结果表明,随着PGRs的撤除及ABA处理,LaSPL2LaSPL3均有不同程度的响应。当ESMs转到成熟培养基(PGRs撤除)的前5 d,即在体细胞胚发育早期,LaSPL2LaSPL3的表达均有所下调(图5AC),其中,LaSPL3下调程度较多(图5C);而在ABA缺失的情况下,其表达水平略有上调(图5BD)。

      图  5  落叶松体细胞胚胎发生早期LaSPL2 (A、B)和LaSPL3(C、D)对ABA(A、 C)和ABA缺失(B、D)的应答模式

      Figure 5.  Accumulation of LaSPL2 (A, B)and LaSPL3 (C, D)transcripts in ABA-treated (A, C) and no ABA-treated ESMs (B, D) ESMs during the early somatic embryogenesis stage.

      当ESMs转接到成熟培养基后,第7~10天时出现黄色胚头[31]。qRT-PCR结果(图6)表明:随着体细胞胚的进一步发育,LaSPL2的表达水平在10 d达到最高峰,14~35 d表达下降,期间变化不明显,42 d降到最低值;LaSPL3的表达水平在7~14 d逐渐升高,随后下调,42 d达到最低值;表明这2个基因可能与早期胚胎发生相关。

      图  6  落叶松体细胞胚发育过程中LaSPL2 (A) 和LaSPL3 (B)的表达模式

      Figure 6.  Expression patterns of LaSPL2 (A) and LaSPL3 (B) during somatic embryogenesis.

    • miR156通过识别SPL基因家族编码区或3′非翻译区(UTR)中保守的识别位点,进行转录后或翻译水平调控[4]。拟南芥AtSPL3AtSPL4AtSPL5的miR156识别位点位于3′UTR区域,其余AtSPLs的miR156识别位点位于编码区[3, 32]。本研究从落叶松中鉴定了2个SPL同源基因,系统发育树分析表明,它们分别与拟南芥AtSPL2/10/11AtSPL3/4/5最相似(图3),将其命名为LaSPL2LaSPL3。多序列比对发现,该基因编码的蛋白质具有SPL家族蛋白的典型特征,具有保守的SBP结构域(图2),表明LaSPL2LaSPL3SPL家族同源。LaSPL2LaSPL3 mRNA具有miR156识别位点(图1),其中,LaSPL2的识别位点位于编码区,而LaSPL3的识别位点位于3′UTR,这与拟南芥中的研究结果相一致,其表达在一定程度上可能受miR156调控。本研究构建了pSuper1300-LaSPL2-GFP和pSuper1300-LaSPL3-GFP融合表达载体,通过烟草瞬时表达体系进行亚细胞定位,结果显示LaSPL2LaSPL3定位于细胞核中(图4),因具有保守的SBP结构域,表明LaSPL2和LaSPL3是SPL家族蛋白,故而推测它们的编码产物为SPL类转录因子。

      ABA在落叶松体细胞胚发育中起重要调控作用[33],可以诱导H2O2和ROS的产生,并调节CATSODAPX的表达[34]。H2O2可能通过细胞信号转导系统影响基因表达,进而诱导体细胞胚发育[34]。研究表明,拟南芥过表达miR156可以降低H2O2水平和SA信号通路相关基因的转录水平[35],同时降低植物对真菌的免疫抗性。上述结果表明,miR156/SPLs系统影响ROS的积累,并控制SA信号通路的激活或失活[35]。通过分析ABA缺失对LaSPL2LaSPL3表达的影响(图5),表明ABA可能是落叶松体细胞胚发育早期LaSPL2LaSPL3下调表达的主要因子。

      miRNAs通过影响植物激素的生物合成、转运和信号转导途径而成为植物生长发育的关键调控因子[36]。生长素在植物体胚细胞重编程和体细胞胚胎发育中发挥重要作用[37-39]。前期研究表明,LaGH3的表达在一定程度上反映了落叶松体细胞胚发育过程中内源生长素的动态变化,体细胞胚发育前6 d,ABA是迅速下调LaGH3的主要因子,反应此时在ABA作用下生长素水平可能会下调,以降低细胞分裂速度,实现ESMs从快速增殖状态到胚胎发育的转变,进而促进体细胞胚的进一步发育[40]。上述研究表明,ABA可能通过调控生长素的水平而影响LaSPL2LaSPL3的表达。在ABA缺失的情况下,LaSPL2LaSPL3表达水平略有上调(图5BD)。前期研究发现,在ABA缺失的培养基上生长的ESMs中H2O2含量升高,细胞由白色逐渐转变为褐色,体细胞胚发育受阻[31],这可能与ABA缺失导致的早期胁迫有关。

      随着体细胞胚的进一步发育,LaGH3转录水平逐渐增加,在28 d达到高峰,表明生长素在体细胞胚的进一步发育中具有重要作用[40]。此时,LaSPL2LaSPL3的表达水平,分别在10 d和14 d达到峰值,表明其可能与早期胚胎形成相关(图6),同时H2O2含量在10 d左右时处于低谷期[34]。因此,认为此时LaSPL2LaSPL3的高表达可能与生长素、H2O2调控相关,进而参与体细胞胚的早期形成。

      拟南芥miR156有助于促进胚胎形态建成[21, 41-42]DICER-LIKE1DCL1)突变体中,除了AtSPL10AtSPL11外,AtSPL2表达水平上调了5.33倍[21]。柑橘中敲除CsSPL3可以显著提高柑橘愈伤组织的体细胞胚发生能力[22]。上述结果表明,miR156/SPL调控系统可能参与植物的胚胎发育。前期研究表明,在落叶松早期子叶胚发育的前6个阶段,miR156b前体和成熟体表达水平逐渐升高[26, 43],表明其表达可能与ABA的调控相关。拟南芥的原位杂交分析中,发现miR156信号随着合子胚胎的发育而逐渐增强[21],与落叶松体细胞胚发育中的表达模式相一致[26]。本研究发现,随着体细胞胚发育成熟,LaSPL2LaSPL3表达量逐渐下降,并在42 d达到最低值(图6)。这与笔者前期发现miR156水平在成熟体细胞胚中达到峰值相一致[26]。因此,落叶松中ABA可能通过miR156下调LaSPL2LaSPL3,提高体细胞胚发生能力,进而促进胚胎发育及成熟休眠。

    • 本研究从落叶松中克隆了2个SPL同源基因LaSPL2LaSPL3,均具有保守的SBP结构域,其cDNA序列中存在miR56的识别位点;亚细胞定位结果表明LaSPL2LaSPL3定位于细胞核;qRT-PCR结果表明,ABA可能是落叶松体细胞胚发育早期LaSPL2LaSPL3下调表达的主要因子;LaSPL2LaSPL3在体细胞胚发育的早期阶段达到最高峰,提示其可能参与体细胞胚的早期形成。随着体细胞胚发育成熟,LaSPL2和LaSPL3表达可能受miR156的调控,在体细胞胎的成熟休眠中具有重要意义。

参考文献 (43)

目录

    /

    返回文章
    返回