[1] FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS (FAO). Global Forest Resources Assessment 2010: Main Report[R]. 2010.
[2] 郭起荣, 杨光耀, 杜天真, 等. 中国竹林的碳素特征[J]. 世界竹藤通讯, 2005, 3(3):25-28.
[3] LIMA R A F, ROTHER D C, MULER A E, et al. Bamboo overabundance alters forest structure and dynamics in the Atlantic Forest hotspot[J]. Biological Conservation, 2012, 147(1): 32-39. doi: 10.1016/j.biocon.2012.01.015
[4] XU Q F, JIANG P K, WU J S, et al. Bamboo invasion of native broadleaf forest modified soil microbial communities and diversity[J]. Biological Invasions, 2015, 17(1): 433-444. doi: 10.1007/s10530-014-0741-y
[5] LUAN J W, LI S Y, DONG W, et al. Litter decomposition affected by bamboo expansion is modulated by litter-mixing and microbial composition[J]. Functional Ecology, 2021, 35(11): 2562-2574. doi: 10.1111/1365-2435.13911
[6] XU Q F, LIANG C F, CHEN J H, et al. Rapid bamboo invasion (expansion) and its effects on biodiversity and soil processes[J]. Global Ecology and Conservation, 2020, 21: e00787. doi: 10.1016/j.gecco.2019.e00787
[7] SCHIERMEIER Q. Climate change: A sea change[J]. Nature, 2006, 439(7074): 256-260. doi: 10.1038/439256a
[8] FAHEY T J, YAVITT J B, SHERMAN R E, et al. Earthworm effects on the incorporation of litter C and N into soil organic matter in a sugar maple forest[J]. Ecological Applications, 2013, 23(5): 1185-1201. doi: 10.1890/12-1760.1
[9] 吴仲民, 李意德, 周光益, 等. “非正常凋落物”及其生态学意义[J]. 林业科学, 2008, 44(11):28-31.
[10] XU X N, HIRATA E, ENOKI T, et al. Leaf litter decomposition and nutrient dynamics in a subtropical forest after typhoon disturbance[J]. Plant Ecology, 2004, 173(2): 161-170. doi: 10.1023/B:VEGE.0000029319.05980.70
[11] ZHOU B Z, LI Z C, WANG X M, et al. Impact of the 2008 ice storm on moso bamboo plantations in southeast China[J]. Journal of Geophysical Research-Biogeosciences, 2011, 116(G3): G6H.
[12] WU J J, ZHANG H, CHENG X L, et al. Nitrogen addition stimulates litter decomposition rate: From the perspective of the combined effect of soil environment and litter quality[J]. Soil Biology and Biochemistry, 2023, 179: 108992. doi: 10.1016/j.soilbio.2023.108992
[13] GILL A L, SCHILLING J, HOBBIE S E. Experimental nitrogen fertilisation globally accelerates, then slows decomposition of leaf litter[J]. Ecology Letters, 2021, 24(4): 802-811. doi: 10.1111/ele.13700
[14] LIU W Y, FOX J, XU Z F. Leaf litter decomposition of canopy trees, bamboo and moss in a montane moist evergreen broad-leaved forest on Ailao Mountain, Yunnan, south-west China[J]. Ecological Research, 2000, 15(4): 435-447. doi: 10.1046/j.1440-1703.2000.00366.x
[15] PEÑA-PEÑA K, IRMLER U. Modelling litter decomposition rates along a geographic, climatic, and land-use gradient in Southern Amazonia and Pará[J]. Pedobiologia, 2022, 95: 150839. doi: 10.1016/j.pedobi.2022.150839
[16] SERES A, KRÖEL-DULAY G, SZAKÁLAS J, et al. The response of litter decomposition to extreme drought modified by plant species, plant part, and soil depth in a temperate grassland[J]. Ecology and Evolution, 2022, 12(12): e9652. doi: 10.1002/ece3.9652
[17] FONTE S J, SCHOWALTER D T. Decomposition of greenfall vs. senescent foliage in a tropical forest ecosystem in Puerto Rico[J]. Biotropica., 2004, 36(4): 474-482. doi: 10.1111/j.1744-7429.2004.tb00343.x
[18] 涂利华, 戴洪忠, 胡庭兴, 等. 模拟氮沉降对华西雨屏区撑绿杂交竹凋落物分解的影响[J]. 生态学报, 2011, 31(5):1277-1284.
[19] 李仁洪, 胡庭兴, 涂利华, 等. 模拟氮沉降对华西雨屏区慈竹林凋落物分解的影响[J]. 应用生态学报, 2009, 20(11):2588-2593.
[20] 连华萍. 杉木苦竹混交林生长效应与凋落物分解研究[J]. 福建林业科技, 2014, 41(3):6-11.
[21] OLSON J S. Energy storage and the balance of producers and decomposers in ecological systems[J]. Ecology, 1963, 44(2): 322-331. doi: 10.2307/1932179
[22] 郭培培, 江 洪, 余树全, 等. 亚热带6种针叶和阔叶树种凋落叶分解比较[J]. 应用与环境生物学报:, 2009, 15(5):655-659.
[23] TU L H, HU H L, HU T X, et al. Litterfall, litter decomposition, and nutrient dynamics in two subtropical bamboo plantations of China[J]. Pedosphere, 2014, 24(1): 84-97. doi: 10.1016/S1002-0160(13)60083-1
[24] MAO B, CUI T T, SU T Q, et al. Mixed-litter effects of fresh leaf semi-decomposed litter and fine root on soil enzyme activity and microbial community in an evergreen broadleaf karst forest in southwest China[J]. Frontiers in Plant Science, 2022, 13: 1065807. doi: 10.3389/fpls.2022.1065807
[25] 伍六斤, 张傲冬, 牟 凌, 等. 川西地区7种常见彩叶树种凋落物分解[J]. 应用与环境生物学报, 2021, 27(3):625-631.
[26] SULKAVA P, HUHTA V. Effects of hard frost and freeze-thaw cycles on decomposer communities and N mineralisation in boreal forest soil[J]. Applied Soil Ecology, 2003, 22(3): 225-239. doi: 10.1016/S0929-1393(02)00155-5
[27] BERG B, MATZNER E. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems[J]. Environmental Reviews, 1997, 5(1): 1-25. doi: 10.1139/a96-017
[28] PRESCOTT C E. Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils?[J]. Biogeochemistry, 2010, 101(1-3): 133-149. doi: 10.1007/s10533-010-9439-0
[29] COTRUFO M F, INESON P. Effects of enhanced atmospheric CO2 and nutrient supply on the quality and subsequent decomposition of fine roots of Betula pendula Roth. and Picea sitchensis (Bong. ) Carr.[J]. Plant and Soil, 1995, 170(2): 267-277. doi: 10.1007/BF00010479
[30] SHI L, FAN S H, JIANG Z H, et al. Mixed leaf litter decomposition and N, P release with a focus on Phyllostachys edulis (Carriere) J. Houz. forest in subtropical southeastern China[J]. Acta Societatis Botanicorum Poloniae, 2015, 84(2): 207-214. doi: 10.5586/asbp.2015.019
[31] PEÑA-PEÑA K, IRMLER U. Nitrogen and carbon losses from decomposing litter in natural and agroecosystems of two different climate regions of Brazil[J]. European Journal of Soil Biology, 2018, 86: 26-33. doi: 10.1016/j.ejsobi.2018.02.003
[32] BROWN M E, CHANG M C Y. Exploring bacterial lignin degradation[J]. Current Opinion in Chemical Biology, 2014, 19: 1-7. doi: 10.1016/j.cbpa.2013.11.015
[33] AUSTIN A T, BALLARE C L. Dual role of lignin in plant litter decomposition in terrestrial ecosystems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(10): 4618-4622.
[34] YU G C, ZHAO H B, CHEN J, et al. Soil microbial community dynamics mediate the priming effects caused by in situ decomposition of fresh plant residues[J]. Science of the Total Environment, 2020, 737: 139708. doi: 10.1016/j.scitotenv.2020.139708
[35] 张 悦, 张艺凡, 马怡波, 等. 森林生态系统凋落物分解影响因素研究进展[J]. 环境生态学, 2023, 5(4):45-56.
[36] 段文标, 朱帅威, 陈 佳, 等. 椴树红松林掘根倒木及其微立地对凋落叶分解的影响[J]. 中南林业科技大学学报, 2022, 42(6):1-14.
[37] 陈 佳, 段文标, 曲美学, 等. 云冷杉红松林掘根倒木及其微立地对凋落叶分解速率及养分释放的影响[J]. 生态学报, 2021, 41(24):9749-9759.
[38] 彭少麟, 刘 强. 森林凋落物动态及其对全球变暖的响应[J]. 生态学报, 2002, 22(9):1534-1544.
[39] LIAO S, NI X Y, YANG W Q, et al. Water, rather than temperature, dominantly impacts how soil fauna affect dissolved carbon and nitrogen release from fresh litter during early litter decomposition[J]. Forests, 2016, 7(10): 249.
[40] SONG X Z, JIANG H, ZHANG Z T, et al. Interactive effects of elevated UV-B radiation and N deposition on decomposition of Moso bamboo litter[J]. Soil Biology & Biochemistry, 2014, 69: 11-16.