[1] 刘奇峰, 李卓蓉, 吴江婷, 等. 不同氮素供给水平对84K杨幼苗碳氮代谢的影响[J]. 林业科学研究, 2019, 32(6):63-72.
[2] 徐思瑜, 陈圣贤, 陈雨清, 等. 氮添加对混栽杉木-楠木叶性状的影响[J]. 林业科学研究, 2020, 33(3):184-192.
[3] Raddatz N, Morales de Los Ríos L, Lindahl M, et al. Coordinated transport of nitrate, potassium, and sodium[J]. Frontiers in Plant Science, 2020, 11: 247. doi: 10.3389/fpls.2020.00247
[4] Guan P, Ripoll J J, Wang R, et al. Interacting TCP and NLP transcription factors control plant responses to nitrate availability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(9): 2419-2424. doi: 10.1073/pnas.1615676114
[5] Konishi M, Yanagisawa S. The role of protein-protein interactions mediated by the PB1 domain of NLP transcription factors in nitrate-inducible gene expression[J]. BMC Plant Biology, 2019, 19(1): 90. doi: 10.1186/s12870-019-1692-3
[6] Yu L H, Wu J, Tang H, et al. Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and -sufficient conditions by enhancing nitrogen and carbon assimilation[J]. Scientific Reports, 2016, 6: 27795. doi: 10.1038/srep27795
[7] Yan D, Easwaran V, Chau V, et al. NIN-like protein 8 is a master regulator of nitrate-promoted seed germination in Arabidopsis[J]. Nature Communications, 2016, 7: 13179. doi: 10.1038/ncomms13179
[8] Alfatih A, Wu J, Zhang Z S, et al. Rice NIN-Like Protein 1 rapidly responds to nitrogen deficiency and improves yield and nitrogen use efficiency[J]. Journal of Experimental Botany, 2020, 71(19): 6032-6042. doi: 10.1093/jxb/eraa292
[9] Liu K H, Niu Y, Konishi M, et al. Discovery of Nitrate-CPK-NLP signaling in central nutrient-growth networks[J]. Nature, 2017, 545(7654): 311-316. doi: 10.1038/nature22077
[10] Hu B, Jiang Z, Wang, W, et al. Nitrate-NRT1.1b-SPX4 cascade integrates nitrogen and phosphorus signaling networks in plants[J]. Nature Plants, 2019, 5(4): 401-413. doi: 10.1038/s41477-019-0384-1
[11] Jagadhesan B, Sathee L, Meena H S, et al. Genome wide analysis of NLP transcription factors reveals their role in nitrogen stress tolerance of rice[J]. Scientific reports, 2020, 10(1): 9368. doi: 10.1038/s41598-020-66338-6
[12] Kumar A, Batra R, Gahlaut V, et al. Genome-wide identification and characterization of gene family for RWP-RK transcription factors in wheat (Triticum aestivum L.)[J]. PLoS ONE, 2018, 13(12): e0208409. doi: 10.1371/journal.pone.0208409
[13] Ge M, Wang Y, Liu Y, et al. The NIN-like protein 5 (ZmNLP5) transcription factor is involved in modulating the nitrogen response in maize[J]. The Plant Journal, 2020, 102(2): 353-368. doi: 10.1111/tpj.14628
[14] 李玉敏, 冯鹏飞. 基于第九次全国森林资源清查的中国竹资源分析[J]. 世界竹藤通讯, 2019, 17(6):45-48.
[15] Zou N, Huang L, Chen H, et al. Nitrogen form plays an important role in the growth of moso bamboo (Phyllostachys edulis) seedlings[J]. PeerJ, 2020, 8(6): e9938. doi: 10.7717/peerj.9938
[16] 李静文, 刘晓颖, 李士坤, 等. 氮磷钾配比施肥对毛竹出笋及叶片生理特性的影响[J]. 西南农业学报, 2020, 33(12):2885-2890.
[17] Wu Z Z, Ying Y Q, Zhang Y B, et al. Alleviation of drought stress in Phyllostachys edulis by N and P application[J]. Scientific Reports, 2018, 8: 228. doi: 10.1038/s41598-017-18609-y
[18] Li Q, Peng C, Zhang J, et al. Nitrogen addition decreases methane uptake caused by methanotroph and methanogen imbalances in a moso bamboo forest[J]. Scientific Reports, 2021, 11: 5578. doi: 10.1038/s41598-021-84422-3
[19] 陶晨悦, 邵珊璐, 史文辉, 等. 氮沉降对干旱胁迫下毛竹实生苗生物量和保护酶活性的影响[J]. 林业科学, 2019, 55(9):31-40.
[20] Wu J, Zhang Z S, Xia J Q, et al. Rice NIN-Like Protein 4 plays a pivotal role in nitrogen use efficiency[J]. Plant Biotechnology Journal, 2021, 19(3): 448-461. doi: 10.1111/pbi.13475
[21] Konishi M, Yanagisawa S. Arabidopsis NIN-like transcription factors have a central role in nitrate signaling[J]. Nature Communications, 2013, 4: 1617. doi: 10.1038/ncomms2621
[22] Mu X, Luo J. Evolutionary analyses of NIN-like proteins in plants and their roles in nitrate signaling[J]. Cellular and Molecular Life Sciences, 2019, 76(19): 3753-3764. doi: 10.1007/s00018-019-03164-8
[23] Zhao H, Gao Z, Wang L, et al. Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis)[J]. Gigascience, 2018, 7(10): 1-12.
[24] Knight V B, Serrano E E. Expression analysis of RNA sequencing data from human neural and glial cell lines depends on technical replication and normalization methods[J]. BMC Bioinformatics, 2018, 19(Supply 14): 412.
[25] Fan C, Ma J, Guo Q, et al. Selection of reference genes for quantitative real-time PCR in bamboo (Phyllostachys edulis)[J]. PLoS One, 2013, 8(2): e56573. doi: 10.1371/journal.pone.0056573
[26] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262
[27] Peng Z H, Lu Y, Li LB, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla)[J]. Nature Genetics, 2013, 45(4): 456-461. doi: 10.1038/ng.2569
[28] Lynch M, Conery J S. The evolutionary fate and consequences of duplicate genes[J]. Science, 2000, 290(5494): 1151-1155. doi: 10.1126/science.290.5494.1151
[29] Marchive C, Roudier F, Castaings L, et al. Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants[J]. Nature Communications, 2013, 4: 1713. doi: 10.1038/ncomms2650
[30] Wu Z, Liu H, Huang W, et al. Genome-wide identification, characterization, and regulation of RWP-RK gene family in the nitrogen-fixing clade[J]. Plants (Basel), 2020, 9(9): 1178.
[31] Konishi M, Yanagisawa S. Roles of the transcriptional regulation mediated by the nitrate-responsive cis-element in higher plants[J]. Biochemical and Biophysical Research Communications, 2011, 411(4): 708-713. doi: 10.1016/j.bbrc.2011.07.008
[32] Xu G, Fan X, Miller A J. Plant nitrogen assimilation and use efficiency[J]. Annual Review of Plant Biology, 2012, 63: 153-182. doi: 10.1146/annurev-arplant-042811-105532
[33] Liu M, Chang W, Fan Y, et al. Genome-wide identification and characterization of Nodule-Inception-Like Protein (NLP) family genes in Brassica napus[J]. International Journal of Molecular Science, 2018, 19(8): 2270. doi: 10.3390/ijms19082270
[34] Zhang T T, Kang H, Fu L L, et al. NIN-like protein 7 promotes nitrate-mediated lateral root development by activating transcription of Tryptophan Aminotransferase Related 2[J]. Plant Science, 2021, 303: 110771. doi: 10.1016/j.plantsci.2020.110771
[35] Maeda Y, Konishi M, Kiba T, et al. A NIGT1-centred transcriptional cascade regulates nitrate signaling and incorporates phosphorus starvation signals in Arabidopsis[J]. Nature Communications, 2018, 9: 1376. doi: 10.1038/s41467-018-03832-6
[36] Lin J S, Li X, Luo Z, et al. NIN interacts with NLPs to mediate nitrate inhibition of nodulation in Medicago truncatula[J]. Nature Plants, 2018, 4(11): 942-952. doi: 10.1038/s41477-018-0261-3
[37] Para A, Li Y, Marshall-Colón A, et al. Hit-and-run transcriptional control by bZIP1 mediates rapid nutrient signaling in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(28): 10371-10376. doi: 10.1073/pnas.1404657111
[38] Cao H, Qi S, Sun M, et al. Overexpression of the maize zmnlp6 and zmnlp8 can complement the Arabidopsis nitrate regulatory mutant nlp7 by restoring nitrate signaling and assimilation[J]. Frontiers in Plant Science, 2017, 8: 1703. doi: 10.3389/fpls.2017.01703
[39] Wang M, Hasegawa T, Beier M, et al. Growth and nitrate reductase activity are impaired in rice osnlp4 mutants supplied with nitrate[J]. Plant & Cell Physiology, 2021: 1-12.
[40] Konishi M, Yanagisawa S. Identification of a nitrate-responsive cis-element in the Arabidopsis NIR1 promoter defines the presence of multiple cis-regulatory elements for nitrogen response[J]. The Plant Journal, 2010, 63(2): 269-282. doi: 10.1111/j.1365-313X.2010.04239.x
[41] Suzuki W, Konishi M, Yanagisawa S. The evolutionary events necessary for the emergence of symbiotic nitrogen fixation in legumes may involve a loss of nitrate responsiveness of the NIN transcription factor[J]. Plant Signaling & Behavior, 2013, 8(10): e25975.
[42] Luo J, Zhou J, Li H, et al. Global poplar root and leaf transcriptomes reveal links between growth and stress responses under nitrogen starvation and excess[J]. Tree Physiology, 2015, 35(12): 1283-1302. doi: 10.1093/treephys/tpv091