[1] 李 洁, 列志旸, 许松葵, 等. 不同密度的银合欢林生长分析[J]. 中南林业科技大学学报, 2016, 36(6):70-74.
[2] 楚秀丽, 王 艺, 金国庆, 等. 不同生境、初植密度及林龄木荷人工林生长、材性变异及林分分化[J]. 林业科学, 2014, 50(6):152-159.
[3] Larson P R. The Vascular Cambium: Development and Structure[M]. Berlin: Springer-Verlag Berlin Heidelberg, 1994: 9-30.
[4] Plomion C, LeprovostG, Stokes A. Wood formation in trees[J]. Plant Physiology, 2001, 127(4): 1513-1523. doi: 10.1104/pp.010816
[5] Zhang J, Eswaran G, Serra A J, et al. Transcriptional regulatory framework for vascular cambium development in Arabidopsis roots[J]. Nature Plants, 2019, 5(10): 1033-1042. doi: 10.1038/s41477-019-0522-9
[6] Fisher K, Turner S. PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development[J]. Current Biology, 2007, 17(12): 1061-1066. doi: 10.1016/j.cub.2007.05.049
[7] Smit M E, Mcgregor S R, Sun H, et al. A PXY-mediated transcriptional network integrates signaling mechanisms to control vascular development in Arabidopsis[J]. The Plant Cell, 2019, 32(2): 319-335.
[8] Xu S, Rahman A, Baskin I T. Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis[J]. The Plant Cell, 2008, 20(11): 3065-3079. doi: 10.1105/tpc.108.063354
[9] Polko K J, Barnes J W, Voiniciuc C, et al. SHOU4 proteins regulate traffificking of cellulose synthase complexes to the plasma membrane[J]. Current Biology, 2018, 28(19): 1-9.
[10] Chen H, Wang J P, Liu H, et al. Hierarchical transcription factor and chromatin binding network for wood formation in Populus trichocarpa[J]. The Plant Cell, 2019, 31(3): 602-626.
[11] Akiyoshi N, Nakano Y, Sano R, et al. Involvement of VNS NAC-domain transcription factors in tracheid formation in Pinus taeda[J]. Tree Physiology, 2019, 40(6): 1-13.
[12] Sun Y, Ren S, Ye S, et al. Identification and functional characterization of PtoMYB055 involved in the regulation of the lignin biosynthesis pathway in Populus tomentosa[J]. International Journal of Molecular Sciences, 2020, 21(14): 4857.
[13] Balmant K, Noble J, Alves F C, et al. Xylem systems genetics analysis reveals a key regulator of lignin biosynthesis in Populusdeltoides[J]. Genome Resesrch, 2020, 30(8): 1131-1143. doi: 10.1101/gr.261438.120
[14] Soler M, Plasencia A, Larbat R, et al. The Eucalyptus linker histone variant EgH1.3 cooperates with the transcription factor EgMYB1 to control lignin biosynthesis during wood formation[J]. New Phytologist, 2017, 213(1): 287-299. doi: 10.1111/nph.14129
[15] Ployet R, Soler M, Carocha V, et al. Long cold exposure induces transcriptional and biochemical remodelling of xylem secondary cell wall in Eucalyptus[J]. Tree Physiology, 2017, 38(3): 1-14.
[16] Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences[J]. Bioinformatics, 2006, 22(13): 1658-1659. doi: 10.1093/bioinformatics/btl158
[17] Altschul S F, Madden T L, Schäffer A A, et al. Gapped BLAST and PSI BLAST: a new generation of protein database search programs[J]. Nucleic Acids Research, 1997, 25(17): 3389-3402. doi: 10.1093/nar/25.17.3389
[18] Zheng Y, Jiao C, Sun H, et al. iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases[J]. Molecular Plant, 2016, 9(12): 1667-1670. doi: 10.1016/j.molp.2016.09.014
[19] Li B, Dewey C N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12(1): 323. doi: 10.1186/1471-2105-12-323
[20] Robinson M D, McCarthy D J, Smyth G K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics, 2010, 26(1): 139-140. doi: 10.1093/bioinformatics/btp616
[21] Becker R A, Chambers J M, Wilks A R. The New S Language[M].Monterey: Wadsworth and Brooks/Cole, 1988.
[22] Franceschini A, Szklarczyk D, Frankild S, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration[J]. Nucleic Acids Research, 2013, 41: D808.
[23] Zhong R, Mccarthy R L, Lee C, et al. Dissection of the transcriptional program regulating secondary wall biosynthesis during wood formation in poplar[J]. Plant Physiology, 2011, 157(3): 1452-1468. doi: 10.1104/pp.111.181354
[24] Ning K, Ding C, Huang Q, et al. Transcriptome profiling revealed diverse gene expression patterns in poplar (Populus×euramericana) under different planting densities[J]. PLoS One, 2019, 14(5): e0217066. doi: 10.1371/journal.pone.0217066
[25] Etchells J P, Mishra L S, Kumar M, et al. Wood formation in trees is increased by manipulating PXY-regulated cell division[J]. Currenrt Biology, 2015, 25(8): 1050-1055. doi: 10.1016/j.cub.2015.02.023
[26] Zhong R, Richardson E A, Ye Z. The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis[J]. The Plant Cell, 2007, 19(9): 2776-2792. doi: 10.1105/tpc.107.053678
[27] Ko J H, Kim W C, Han K H, et al. Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis[J]. Plant Journal, 2009, 60(4): 649-665. doi: 10.1111/j.1365-313X.2009.03989.x
[28] Kim W C, Ko J H, Han K H. Identification of a cis-acting regulatory motif recognized by MYB46, a master transcriptional regulator of secondary wall biosynthesis[J]. Plant Molecular Biology, 2012, 78(4-5): 489-501. doi: 10.1007/s11103-012-9880-7
[29] Kim W C, Ko J H, Kim J Y, et al. MYB46 directly regulates the gene expression of secondary wall-associated cellulose synthases in Arabidopsis[J]. Plant Journal, 2013, 73(10): 26-36.
[30] Zhong R, Mccarthy R L, Haghighat M, et al. The poplar MYB master switches bind to the SMRE site and activate the secondary wall biosynthetic program during wood formation[J]. PloS One, 2013, 8(7): e69219. doi: 10.1371/journal.pone.0069219
[31] Chai G, Qi G, Cao Y, et al. Poplar PdC3H17 and PdC3H18 are direct targets of PdMYB3 and PdMYB21, and positively regulate secondary wall formation in Arabidopsis and poplar[J]. New Phytologist, 2014, 203(2): 520-534. doi: 10.1111/nph.12825
[32] Furuta K M, Yadav S R, Lehesranta S, et al. Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in enucleation[J]. Science, 2014, 345(6199): 933-937. doi: 10.1126/science.1253736