[1] 赵 策, 邱尔发, 马俊丽, 等. 行道树国槐不同形态重金属富集效能研究[J]. 林业科学研究, 2019, 32(3):142-151. doi: 10.13275/j.cnki.lykxyj.2019.03.019
[2] McCallum R I. Occupational exposure to antimony compounds[J]. Environ Monit, 2005, 7(12): 1245-1250. doi: 10.1039/b509118g
[3] 张 强, 刘 飞, 纪 磊, 等. 锑胁迫对玉米生物量、光合特性及锑积累的影响[J]. 核农学报, 2017, 31(8):1633-1639. doi: 10.11869/j.issn.100-8551.2017.08.1633
[4] 蓝唯源, 宋书巧, 吴浩东, 等. 土壤三价锑污染对甜芥菜生长及品质的影响研究[J]. 环境科学与技术, 2009, 32(2):20-23. doi: 10.3969/j.issn.1003-6504.2009.02.006
[5] He M, Wang X, Wu F, et al. Antimonypollution in China[J]. Science of the Total Environment, 2012, 421/422(3): 41-50.
[6] 何孟常, 季海冰, 赵承易, 等. 锑矿区土壤和植物中重金属污染初探[J]. 北京师范大学学报(自然科学版), 2002, 38(3):417-420.
[7] 薛 亮. 锑矿区植物重金属积累特征及其耐锑机理研究[D]. 北京: 中国林业科学研究院, 2013.
[8] 周 林, 梁亚楠, 武艳芳, 等. 重金属富集植物研究进展及其园林应用分析[J]. 长江大学学报(自科版), 2017, 14(2):52-58.
[9] 薛 亮, 高 暝, 史胜青, 等. 四种抗污染木本植物对锑的生理响应及积累特征研究[J]. 生态环境学报, 2014, 23(8):1344-1350. doi: 10.3969/j.issn.1674-5906.2014.08.015
[10] Wang P, Ma L, Li Y, et al. Transcriptome profiling of indole-3-butyric acid-induced adventitious root formation in softwood cuttings of the Catalpa bungei variety ‘YU-1’ at different developmental stages[J]. Genes & Genomics, 2015, 38(2): 145-162.
[11] Zheng H, Zhang X, Ma W, et al. Morphological and physiological responses to cyclic drought in two contrasting clones of Catalpa bungei[J]. Environmental and Experimental Botany, 2017, 138: 77-87. doi: 10.1016/j.envexpbot.2017.02.016
[12] 童 琪, 王 陈, 黄凤燕, 等. 冷水江锑矿废弃地乡土树种重金属富集能力研究[J]. 有色金属(冶炼部分), 2021(3):78-82.
[13] Tang L, Luo W, Tian S, et al. Genotypic differences in cadmium and nitrate co-accumulation among the Chinese cabbage clones under field conditions[J]. Scientia Horticulturae, 2016, 201: 92-100. doi: 10.1016/j.scienta.2016.01.040
[14] Liu J, Mei C, Cai H, et al. Relationships Between Subcellular Distribution and Translocation and Grain Accumulation of Pb in Different Rice Cultivars[J]. Water, Air, & Soil Pollution, 2015, 226(4): 1-9.
[15] 张 莹, 张 玲, 刘 泓, 等. 柳树 6 个无性系在铜尾矿砂中的生长及耐受性差异[J]. 林业科学研究, 2017, 30(6):936-945.
[16] 施 翔, 王树凤, 陈益泰, 等. 不同栓皮栎家系对重金属的耐性和富集特性[J]. 林业科学研究, 2021, 34(1):121-127. doi: 10.13275/j.cnki.lykxyj.2021.01.015
[17] Li H B, Yang Z H, Yuan P F, et al. Characteristics of antimony pollution in soils at mining areas in central hunan province[J]. Environmental Science & Technology, 2011, 34(1): 70-74.
[18] 柴立元, 王 勇, 杨志辉, 等. 锑胁迫下地枇杷的生理变化特性[J]. 中国有色金属学报 (英文版), 2017, 27(4):939-945.
[19] 张连金, 赖光辉, 孙 颖, 等. 基于因子分析法的北京九龙山土壤质量评价[J]. 西北林学院学报, 2016, 31(3):7-14.
[20] 王晓娟, 王文斌, 杨龙, 等. 重金属镉(Cd)在植物体内的转运途径及其调控机制[J]. 生态学报, 2015, 35(23):7921-7929.
[21] Yang W D, Wang Y Y, Zhao F L, et al. Variation in copper and zinc tolerance and accumulation in 12 willow clones: implications for phytoextraction[J]. Journal of Zhejiang University-SCIENCE B, 2014, 15(9): 788-800. doi: 10.1631/jzus.B1400029
[22] Ren J H, Ma L Q, Sun H J, et al. Antimony uptake, translocation and speciation in rice plants exposed to antimonite and antimonate[J]. Science of the Total Environment, 2014, 475: 83-89. doi: 10.1016/j.scitotenv.2013.12.103
[23] Durand T C, Hausman J F, Carpin S, et al. Zinc and cadmium effects on growth and ion distribution in Populustremula × Populus alba[J]. Biologial Plantarum, 2010, 54(1): 191-194. doi: 10.1007/s10535-010-0033-z
[24] Toppi L, Gabbrielli R. Response to cadmium in higher plants[J]. Environmental & Experimental Botany, 1999, 41(2): 105-130.
[25] Tan Y F, Corke H. Factor analysis of physicochemical properties of 63 rice varieties[J]. Journal of the Science of Food and Agriculture, 2002, 82(7): 745-752. doi: 10.1002/jsfa.1094
[26] 李 聪, 杨爱江, 陈蔚洁, 等. 锑胁迫对鱼腥草抗氧化能力及渗透调节物质的影响[J]. 江苏农业科学, 2019, 47(13):175-179. doi: 10.15889/j.issn.1002-1302.2019.13.043