[1] SCHUβLER A, SCHWARZOTT D, WALKER C. A new fungal phylum, the Glomeromycota: phylogeny and evolution[J]. Mycological research, 2001, 105(12): 1413-1421. doi: 10.1017/S0953756201005196
[2] SCHNEPF A, LEITNER D, Klepsch S, et al. Modelling phosphorus dynamics in the soil-plant system[M]. Berlin: Springer Berlin Heidelberg, 2011: 113-133.
[3] XIAO L, BI Y, DU S, et al. Effects of re-vegetation type and arbuscular mycorrhizal fungal inoculation on soil enzyme activities and microbial biomass in coal mining subsidence areas of Northern China[J]. Catena, 2019, 177: 202-209. doi: 10.1016/j.catena.2019.02.019
[4] 宰学明, 郝振萍, 赵 辉, 等. 丛枝菌根化滨梅苗的根际微生态环境[J]. 林业科学, 2014, 50(1):41-48.
[5] 马 放, 苏 蒙, 王 立, 等. 丛枝菌根真菌对小麦生长的影响[J]. 生态学报, 2014, 34(21):6107-6114.
[6] 杨建军. 丛枝菌根对吉贝和木棉抗旱性及其根区营养的影响[D]. 昆明: 西南林业大学, 2015.
[7] 赵乾旭, 史 静, 张仕颖, 等. 土著从枝菌根真菌(AMF)与不同形态氮对紫色土间作大豆生长及氮利用的影响[J]. 菌物学报, 2017, 36(7):983-995. doi: 10.13346/j.mycosystema.170094
[8] MEI L, YANG X, CAO H, et al. Arbuscular mycorrhizal fungi alter plant and soil C: N: P stoichiometries under warming and nitrogen input in a semiarid meadow of China[J]. International Journal of Environmental Research and Public Health, 2019, 16(3): 397-409. doi: 10.3390/ijerph16030397
[9] 王 岩, 邢 丹, 宋拉拉, 等. AM真菌对石漠化地区桑树的促生及养分调控作用[J]. 热带作物学报, 2020, 41(1):7-14. doi: 10.3969/j.issn.1000-2561.2020.01.002
[10] 郑兴蕊, 王克勤, 宋娅丽, 等. 滇中亚高山不同森林土壤酶活性对模拟N沉降的响应[J]. 林业科学研究, 2021, 34(2):50-62. doi: 10.13275/j.cnki.lykxyj.2021.02.006
[11] ZHANG N, GUO R, SONG P, et al. Effects of warming and nitrogen deposition on the coupling mechanism between soil nitrogen and phosphorus in Songnen Meadow Steppe, northeastern China[J]. Soil Biology and Biochemistry, 2013, 65: 96-104. doi: 10.1016/j.soilbio.2013.05.015
[12] 张晓荣, 段广德, 郝龙飞, 等. 氮沉降和接种菌根真菌对灌木铁线莲非结构性碳水化合物及根际土壤酶活性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(1):171-178.
[13] 熊淑萍, 车芳芳, 马新明, 等. 氮肥形态对冬小麦根际土壤氮素生理群活性及无机氮含量的影响[J]. 生态学报, 2012, 32(16):5138-5145.
[14] LI Y, WANG C, GAO S, et al. Impacts of simulated nitrogen deposition on soil enzyme activity in a northern temperate forest ecosystem depend on the form and level of added nitrogen[J]. European Journal of Soil Biology, 2021, 103: 1-9.
[15] 张 艺, 王春梅, 许 可, 等. 模拟氮沉降对温带森林土壤酶活性的影响[J]. 生态学报, 2017, 37(6):1956-1965.
[16] 国家林业局.第八次全国森林资源清查结果[J]. 林业资源管理, 2014(1): 1-2.
[17] LI L, ZHOU G Y, LIU J A, et al. The resource investigation and community structure characteristics of mycorrhizal fungi associated with Chinese fir[J]. African Journal of Biotechnology, 2011, 10(30): 5719-5724.
[18] 彭紫薇, 焦鹏宇, 高李文, 等. 不同林龄杉木人工林土壤氮转化酶活性特征[J]. 林业科学研究, 2022, 35(2):104-111. doi: 10.13275/j.cnki.lykxyj.2022.02.012
[19] 徐小冲, 王新杰, 卢妮妮, 等. 不同林龄杉木人工林根际土添加对其幼苗菌根侵染及生长的影响[J]. 北京林业大学学报, 2020, 42(12):74-82. doi: 10.12171/j.1000-1522.20200044
[20] 崔莉娜, 郭弘婷, 李维扬, 等. 不同林龄杉木人工林菌根侵染特征研究[J]. 生态学报, 2019, 39(6):1926-1934.
[21] 雷 梅, 丁 驰, 甘子莹, 等. 丛枝菌根真菌和施加不同形态氮肥对杉木幼苗养分吸收的影响[J]. 热带亚热带植物学报, 2022, 30(4): 518-527.
[22] 苏宝玲, 韩士杰, 王建国. 根际微域研究中土样采集方法的研究进展[J]. 应用生态学报, 2000, 11(3):477-480. doi: 10.3321/j.issn:1001-9332.2000.03.036
[23] 盛萍萍, 刘润进, 李 敏. 丛枝菌根观察与侵染率测定方法的比较[J]. 菌物学报, 2011, 30(4):519-525. doi: 10.13346/j.mycosystema.2011.04.002
[24] 张淑民. 植物氮、磷、钾联合测定的快速消煮法[J]. 北京农业大学学报, 1988, 14(3):295-300.
[25] 索沛蘅, 杜大俊, 王玉哲, 等. 杉木连栽对土壤氮含量和氮转化酶活性的影响[J]. 森林与环境学报, 2019, 39(2):113-119.
[26] 吴汉卿, 杜世宇, 高 娜, 等. 水氮调控对设施土壤有机氮组分、全氮和矿质氮的影响[J]. 水土保持学报, 2017, 31(6):212-219. doi: 10.13870/j.cnki.stbcxb.2017.06.034
[27] SECK-MBENGUE M F, MULLER A, NGWENE B, et al. Transport of nitrogen and zinc to rhodes grass by arbuscular mycorrhiza and roots as affected by different nitrogen sources (NH4 + -N and NO3-N)[J]. Symbiosis, 2017, 73(3): 191-200. doi: 10.1007/s13199-017-0480-9
[28] 孙思怡, 卢胜旭, 陆宇明, 等. 杉木林下套种阔叶树对土壤生态酶活性及其化学计量比的影响[J]. 林业科学研究, 2021, 34(1):106-113. doi: 10.13275/j.cnki.lykxyj.2021.01.013
[29] QIU L, BI Y, JIANG B, et al. Arbuscular mycorrhizal fungi ameliorate the chemical properties and enzyme activities of rhizosphere soil in reclaimed mining subsidence in northwestern China[J]. Journal of Arid Land, 2019, 11(1): 135-147. doi: 10.1007/s40333-018-0019-9
[30] YE S, YANG Y, XIN G, et al. Studies of the Italian ryegrass–rice rotation system in southern China: Arbuscular mycorrhizal symbiosis affects soil microorganisms and enzyme activities in the Lolium mutiflorum L. rhizosphere[J]. Applied Soil Ecology, 2015, 90: 26-34. doi: 10.1016/j.apsoil.2015.01.017
[31] 苏友波, 林 春, 张福锁, 等. 不同AM菌根菌分泌的磷酸酶对根际土壤有机磷的影响[J]. 土壤, 2003, 35(4):334-338,343. doi: 10.3321/j.issn:0253-9829.2003.04.013
[32] 张宇亭, 朱 敏, 线岩相洼, 等. 接种AM真菌对玉米和油菜种间竞争及土壤无机磷组分的影响[J]. 生态学报, 2012, 32(22):7091-7101.
[33] YANG K, ZHU J, GU J, et al. Changes in soil phosphorus fractions after 9 years of continuous nitrogen addition in a Larix gmelinii plantation[J]. Annals of Forest Science, 2015, 72(4): 435-442. doi: 10.1007/s13595-014-0444-7
[34] TRESEDER K K, VITOUSEK P M. Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests[J]. Ecology, 2001, 82(4): 946-954. doi: 10.1890/0012-9658(2001)082[0946:EOSNAO]2.0.CO;2
[35] 黄 眯. 不同形态氮对油茶幼苗生长及土壤酶活性的影响[D]. 南昌: 江西农业大学, 2021.
[36] 刘春华, 吴东梅, 刘雨晖, 等. 氮沉降对米槠天然林土壤有机碳及微生物群落结构的影响[J]. 林业科学研究, 2021, 34(2):42-49.
[37] 彭正萍. 植物氮素吸收、运转和分配调控机制研究[J]. 河北农业大学学报, 2019, 42(2):1-5. doi: 10.13320/j.cnki.jauh.2019.0024
[38] 严 君, 韩晓增, 王树起, 等. 不同形态氮素对种植大豆土壤中微生物数量及酶活性的影响[J]. 植物营养与肥料学报, 2010, 16(2):341-347. doi: 10.11674/zwyf.2010.0212
[39] 张 雪, 刘守伟, 吴凤芝, 等. 不同氮素形态对黄瓜根区土壤微生物数量及土壤酶活性的影响[J]. 中国蔬菜, 2014(3):19-25. doi: 10.3969/j.issn.1000-6346.2014.03.006
[40] 马宗斌, 熊淑萍, 何建国, 等. 氮素形态对专用小麦中后期根际土壤微生物和酶活性的影响[J]. 生态学报, 2008, 28(4):1544-1551. doi: 10.3321/j.issn:1000-0933.2008.04.022
[41] HE W, ZHANG M, JIN G, et al. Effects of nitrogen deposition on nitrogen-mineralizing enzyme activity and soil microbial community structure in a korean pine plantation[J]. Microbial Ecology, 2021, 81(2): 410-424. doi: 10.1007/s00248-020-01595-6
[42] WANG C, LV Y, LIU X L, et al. Ecological effects of atmospheric nitrogen deposition on soil enzyme activity[J]. Journal of forestry research, 2013, 24(1): 109-114. doi: 10.1007/s11676-013-0330-4
[43] LV Y, WANG C, WANG F, et al. Effects of nitrogen addition on litter decomposition, soil microbial biomass, and enzyme activities between leguminous and non-leguminous forests[J]. Ecological research, 2013, 28(5): 793-800. doi: 10.1007/s11284-013-1060-y
[44] HUANG W, LIU J, WANG Y P, et al. Increasing phosphorus limitation along three successional forests in southern China[J]. Plant and Soil, 2013, 364(1): 181-191.