[1] GUO J, ZHANG Y J, ZHANG K B. The key sectors for energy conservation and carbon emissions reduction in China: Evidence from the input-output method[J]. Journal of Cleaner Production, 2018, 179(APR.1): 180-190.
[2] 武 强, 刘宏磊, 赵海卿, 等. 解决矿山环境问题的“九节鞭”[J]. 煤炭学报, 2019, 44(1):10-22.
[3] 中华人民共和国自然资源部. 中国矿产资源报告2021[R/OL]. 中华人民共和国自然资源部. 北京, 地质出版社: 1-27. [2022-6-15].https://www.mnr.gov.cn/sj/sjfw/kc_19263/zgkczybg/
[4] WANG Q, LI R R. Journey to burning half of global coal: Trajectory and drivers of China's coal use[J]. Renewable & Sustainable Energy Reviews, 2016(58): 341-346.
[5] 严 刚, 郑逸璇, 王雪松, 等. 基于重点行业/领域的我国碳排放达峰路径研究[J]. 环境科学研究, 2022, 35(2):309-319.
[6] 李树志. 我国采煤沉陷区治理实践与对策分析[J]. 煤炭科学技术, 2019, 47(1):36-43.
[7] 杨博宇, 白中科. 碳中和背景下煤矿区土地生态系统碳源/汇研究进展及其减排对策[J]. 中国矿业, 2021, 30(5):1-9.
[8] 鞠建华. “双碳”目标背景下矿业发展新机遇与实现路径[J]. 中国矿业, 2022, 31(1):1-5.
[9] 王 军, 应凌霄, 钟莉娜. 新时代国土整治与生态修复转型思考[J]. 自然资源学报, 2020, 35(1):26-36.
[10] FENG X T, LIU J P, CHEN B R, et al. Monitoring, warning, and control of rockburst in deep metal mines[J]. Engineering, 2017, 3(4): 538-545. doi: 10.1016/J.ENG.2017.04.013
[11] SHI J, DU P, LUO H L, et al. Characteristics and risk assessment of soil polluted by lead around various metal mines in China[J]. International Journal of Environmental Research Public Health, 2021, 18(9): 1-9.
[12] AHIRWAL J, MAITI S K. Assessment of soil properties of different land uses generated due to surface coal mining activities in tropical Sal (Shorea robusta) forest, India[J]. Catena, 2016(140): 155-163.
[13] LI J H, LI H, ZHANG Q, et al. Effects of fertilization and straw return methods on the soil carbon pool and CO2 emission in a reclaimed mine spoil in Shanxi Province, China[J]. Soil Tillage Research, 2019(195): 104361.
[14] 严 洁, 于小娟, 唐 明, 等. 造林对乌海露天煤矿复垦地土壤养分和碳库的影响[J]. 林业科学研究, 2021, 34(4):66-73.
[15] 赵明轩, 吕连宏, 张保留, 等. 中国能源消费、经济增长与碳排放之间的动态关系[J]. 环境科学研究, 2021, 34(6):1509-1522.
[16] ZHONG X, CHEN Z W, LI Y Y, et al. Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern Chin[J]. Journal of Hazardous Materials, 2020(400): 123289.
[17] 陈 浮, 于昊辰, 卞正富, 等. 碳中和愿景下煤炭行业发展的危机与应对[J]. 煤炭学报, 2021, 46(6):1808-1820.
[18] XIAO W, HU Z Q, FU Y H. Zoning of land reclamationin coal mining area and new progresses for the past 10 years[J]. International Journal of Coal Science & Technology, 2014, 1(2): 177-183.
[19] United Nations Environment Programme (UNEP). Adaptation gap report 2020[R/OL]. 2020. https://www.unep.org/resources/adaptation-gap-report-2020.
[20] United Nations Environment Programme (UNEP). Emission gap report 2019[R/OL]. 2019. https://www.unep.org/resources/emissions-gap-report-2019.
[21] XU X C, GU X W, WANG Q, et al. Production scheduling optimization considering ecological costs for open pit metal mines[J]. Journal of Cleaner Production, 2018(180): 210-221.
[22] 胡玉凤, 丁友强. 碳排放权交易机制能否兼顾企业效益与绿色效率?[J]. 中国人口·资源与环境, 2020, 30(3):56-64.
[23] COSTANZA R, ARGE A R, GROOT R D, et al. The value of the world's ecosystem services and natural capital[J]. Ecological Economics, 1997, 25(1): 3-15.
[24] KIVINEN S. Sustainable post-mining land use: Are closed metal mines abandoned or re-used space[J]? Sustainability, 2017, 9(10): 1705.
[25] 胡振琪, 龙精华, 王新静. 论煤矿区生态环境的自修复、自然修复和人工修复[J]. 煤炭学报, 2014, 39(8):1751-1757.
[26] 陈 浮, 朱燕峰, 马 静, 等. 黄土高原矿区生态修复固碳机制与增汇潜力及调控[J]. 煤炭科学技术, 2023, 51(1):502-513.
[27] 胡振琪, 肖 武, 赵艳玲. 再论煤矿区生态环境“边采边复”[J]. 煤炭学报, 2020, 45(1):351-359.
[28] 王广成, 曹飞飞. 基于演化博弈的煤炭矿区生态修复管理机制研究[J]. 生态学报, 2017, 37(12):4198-4207.
[29] 黄 翌, 汪云甲, 田 丰, 等. 煤炭开采对植被-土壤系统扰动的碳效应研究[J]. 资源科学, 2014, 36(4):817-823.
[30] 廖小罕. 地理科学发展与新技术应用[J]. 地理科学进展, 2020, 39(5):709-715.
[31] PALMER M A, FILOSO S. Restoration of ecosystem services for environmental markets[J]. Science, 2009, 325(5940): 575-576. doi: 10.1126/science.1172976
[32] BIRCH J C, NEWTON A C, AQUINO C A, et al. Cost-effectiveness of dryland forest restoration evaluated by spatial analysis of ecosystem services[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(50): 21925-21930.
[33] 胡振琪. 我国土地复垦与生态修复30年: 回顾、反思与展望[J]. 煤炭科学技术, 2019, 47(1):25-35.
[34] 张进德, 郗富瑞. 我国废弃矿山生态修复研究[J]. 生态学报, 2020, 40(21):7921-7930.
[35] LI P F, ZHANG X C, HAO M D, et al. Effects of vegetation restoration on soil bacterial communities, enzyme activities, and nutrients of reconstructed soil in a mining area on the Loess Plateau, China[J]. Sustainability, 2019, 11(8): 2295. doi: 10.3390/su11082295
[36] JACKSON S T, HOBBS R J. Ecological restoration in the light of ecological history[J]. Science, 2009, 325(5940): 567-569.
[37] 陈 浮, 朱燕峰, 马 静, 等. 东部平原采煤沉陷区降污固碳协同修复机制与关键技术[J]. 煤炭学报, 2023, 48(7):2836-2849.
[38] YANG K, WANG S F, CAO Y G, et al. Ecological restoration of a Loess open-cast mining area in China: Perspective from an ecological security pattern[J]. Forests, 2022(13): 269.
[39] GOMEZ-ROS J M, GARCIA G, PENS J M. Assessment of restoration success of former metal mining areas after 30 years in a highly polluted Mediterranean mining area: Cartagena-La Unión[J]. Ecological Engineering, 2013(57): 393-402.
[40] RUIZ-JAEN M C, AIDE T M. Restoration success: How is it being measured[J]? Restoration Ecology, 2010, 13(3): 569-577.
[41] Society Ecological Restoration International Science and Policy Working Group. The SER international primer on ecological restoration[M]. Tucson, Arizona: Society Ecological Restoration International, 2004: 1-13.
[42] MITANI Y, SHOJI Y, KURIYAMA K. Estimating economic values of vegetation restoration with choice experiments: A case study of an endangered species in Lake Kasumigaura, Japan[J]. Landscape Ecological Engineering, 2008, 4(2): 103-113. doi: 10.1007/s11355-008-0049-0
[43] 王壮壮, 王 浩, 冯晓明, 等. 重点脆弱生态区生态恢复综合效益评估指标体系[J]. 生态学报, 2019, 39(20):7356-7366.
[44] ZHANG J, HU J, LIAN J, et al. Seeing the forest from drones: Testing the potential of lightweight drones as a tool for long-term forest monitoring[J]. Biological Conservation, 2016(198): 60-69.
[45] 殷亚秋, 蒋存浩, 鞠 星, 等. 海南岛2018年矿山地质环境遥感评价和生态修复对策[J]. 自然资源遥感, 2022, 34(2):194-202.
[46] 张 溪, 周爱国, 甘义群, 等. 金属矿山土壤重金属污染生物修复研究进展[J]. 环境科学与技术, 2010, 33(3):106-112.
[47] 魏 远, 顾红波, 薛 亮, 等. 矿山废弃地土地复垦与生态恢复研究进展[J]. 中国水土保持科学, 2012, 10(2):107-114.
[48] ARZU E. Remote sensing of vegetation health for reclaimed areas of Seyitömer open cast coal mine[J]. International Journal of Coal Geology, 2011, 86(1): 20-26. doi: 10.1016/j.coal.2010.12.009
[49] YU H Y, DING X, LI F, et al. The availabilities of arsenic and cadmium in rice paddy fields from a mining area: The role of soil extractable and plant silicon[J]. Environmental Pollution, 2016(215): 258-265.
[50] HOU H, YAO N, LI J N, et al. Migration and leaching risk of extraneous antimony in three representative soils of China: Lysimeter and batch experiments[J]. Chemosphere, 2013, 93(9): 1980-1988. doi: 10.1016/j.chemosphere.2013.07.017
[51] SUN J, PROMMER H, SIADE A, J. , et al. Model-based analysis of Arsenic immobilization via Iron mineral transformation under advective flows[J]. Environmental Science Technology, 2018, 52(16): 9243-9253. doi: 10.1021/acs.est.8b01762
[52] LUYSSAERT S, SCHULZE E D, BORNER A, et al. Old-growth forests as global carbon sinks[J]. Nature, 2008, 455(7210): 213-215. doi: 10.1038/nature07276
[53] 郭冬艳, 杨 繁, 高 兵, 等. 矿山生态修复助力碳中和的政策建议[J]. 中国国土资源经济, 2021, 34(10):0-54.
[54] 田惠文, 张欣欣, 毕如田, 等. 煤炭开采导致的农田生态系统固碳损失评估[J]. 煤炭学报, 2020, 45(4):1499-1509.
[55] AHIRWAL J, MAITI S K. Development of technosol properties and recovery of carbon stock after 16 years of revegetation on coal mine degraded lands, India[J]. Catena, 2018(166): 114-123.
[56] TOKTAR M, LO-PAPA G, KOZYBAYEVA F E, et al. Ecological restoration in contaminated soils of Kokdzhon phosphate mining area (Zhambyl region, Kazakhstan)[J]. Ecological Engineering, 2016(86): 1-4.
[57] 闫美芳, 王 璐, 郝存忠, 等. 煤矿废弃地生态修复的土壤有机碳效应[J]. 生态学报, 2019, 39(5):1838-1845.
[58] TAN K, PIAO S L, PENG C H, et al. Satellite-based estimation of biomass carbon stocks for northeast China's forests between 1982 and 1999[J]. Forest Ecology Management, 2007, 240(1-3): 114-121. doi: 10.1016/j.foreco.2006.12.018
[59] KRABBENHOFT K, KIRBY D, BIONDINI M, et al. Topoedaphic unit analysis: A site classification system for reclaimed mined lands[J]. Catena, 1993, 20(3): 289-301. doi: 10.1016/0341-8162(93)90006-B
[60] VIVIANA OTERO, RUBEN VAN De KERCHOVE, BEHARA SATYANARAYANA C M-E, et al. Managing mangrove forests from the sky: Forest inventory using field data and Unmanned Aerial Vehicle (UAV) imagery in the Matang Mangrove Forest Reserve, Peninsular Malaysia[J]. Forest Ecology and Management, 2018(411): 35-45.
[61] GETZIN S, WIEGAND K, SCHOENING I. Assessing biodiversity in forests using very high-resolution images and unmanned aerial vehicles[J]. Methods in Ecology and Evolution, 2012, 3(2): 397-404. doi: 10.1111/j.2041-210X.2011.00158.x
[62] 张纪伟, 陈华勇. 金属矿床勘查与开发定量生态评估体系初探: 以福建罗卜岭斑岩型铜钼矿为例[J]. 地球科学, 2021, 46(11):3818-3828.
[63] 李金铠, 马静静, 魏 伟. 中国八大综合经济区能源碳排放效率的区域差异研究[J]. 数量经济技术经济研究, 2020, 37(6):109-129.
[64] 郭庆华, 胡天宇, 马 勤, 等. 新一代遥感技术助力生态系统生态学研究[J]. 植物生态学报, 2020, 44(4):418-435. doi: 10.17521/cjpe.2019.0206
[65] DALPONTE M, BRUZZONE L, GIANELLE D. Fusion of hypespectral and LIDAR remote sensing data for classification of complex forest areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(5): 1416-1427. doi: 10.1109/TGRS.2008.916480
[66] KINCEY M, WARBURTON J, BREWER P. Contaminated sediment flux from eroding abandoned historical metal mines: Spatial and temporal variability in geomorphological drivers[J]. Geomorphology, 2018, 319(15): 199-215.
[67] HUSSON E, HAGNER O, ECHE F. Unmanned aircraft systems help to map aquatic vegetation[J]. Applied Vegetation Science, 2014, 17: 567-577. doi: 10.1111/avsc.12072
[68] HONG W X, WEI G X, BAO L Z, et al. Production process optimization of metal mines considering economic benefit and resource efficiency using an NSGA-II model[J]. Processes, 2018, 6(11): 228. doi: 10.3390/pr6110228
[69] JIA W X, LIU M, YANG Y H, et al. Estimation and uncertainty analyses of grassland biomass in Northern China: Comparison of multiple remote sensing data sources and modeling approaches[J]. Ecological Indicators, 2016(60): 1031-1040.
[70] FAN L, ZHAO W P, FENG W D, et al. Insight into the characteristics of soil microbial diversity during the ecological restoration of mines: A case study in Dabaoshan mining area, China[J]. Sustainability, 2021(13): 11684.
[71] PIAO S L, LIU Q, CHEN A P, et al. Plant phenology and global climate change: Current progresses and challenges[J]. Global Change Biology, 2019(25): 1922-1940.
[72] 官炎俊, 王 娟, 周 伟, 等. 露天矿区土地复垦适应性管理: 内涵解析与框架构建[J]. 中国土地科学, 2023, 37(2):102-112.
[73] LIN Y, JIAO Y, ZHAO M, et al. Ecological restoration of wetland polluted by heavy metals in Xiangtan manganese mine area[J]. Processes, 2021(9): 1702.
[74] MI J X, LIU R, ZHANG S L, et al. Vegetation patterns on a landslide after five years of natural restoration in the Loess Plateau mining area in China[J]. Ecological Engineering, 2019(136): 46-54.
[75] 曾伟生, 陈新云, 蒲 莹, 等. 基于国家森林资源清查数据的不同生物量和碳储量估计方法的对比分析[J]. 林业科学研究, 2018, 31(1):66-71.
[76] 张 帆, 葛世荣. 矿山数字孪生构建方法与演化机理[J]. 煤炭学报, 2023, 48(1):510-522.