[1] Plomion C, Leprovost G, Stokes A. Wood Formation in Trees[J]. Plant Physiology, 2001, 127(4): 1513-1523
[2] 卢孟柱, 胡建军. 我国转基因杨树的研究及应用现状[J]. 林业科技开发, 2006, 20(6): 1-4
[3] Kloti A, Henrich C, Bieri S, et al. Upstream and downstream sequence elements determine the specificity of the rice tungro bacilliform virus promoter and influence RNA production after transcription initiation[J]. Plant molecular biology, 1999, 40(2): 249-266
[4] Saito T, Tadakuma K, Takahashi N, et al. Two cytosolic cyclophilin genes of Arabidopsis thaliana differently regulated in temporal-and organ-specific expression[J]. Bioscience, biotechnology, and biochemistry, 1999, 63(4): 632-637
[5] Du J, Xie H L, Zhang D Q, et al. Regeneration of the secondary vascular system in poplar as a novel system to investigate gene expression by a proteomic approach[J]. Proteomics, 2006, 6(3): 881-895
[6] Wang M J, Qi X L, Zhao S T, et al. Dynamic changes in transcripts during regeneration of the secondary vascular system in Populus tomentosa Carr. revealed by cDNA microarrays[J]. BMC Genomics, 2009, 10: 215
[7] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA[J]. Nucleic Acids Research, 1980, 8(19): 4321-4325
[8] Mitsuda N, Iwase A, Yamamoto H, et al. NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis[J]. The Plant Cell, 2007, 19(1): 270
[9] Zhong R, Richardson E A, Ye Z H. Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis[J]. Planta, 2007, 225(6): 1603-1611
[10] [10] Mitsuda N, Seki M, Shinozaki K, et al. The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence[J]. The Plant Cell, 2005, 17(11): 2993-3006
[11] [11] Zhong R, Demura T, Ye Z H. SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis[J]. The Plant Cell, 2006, 18(11): 3158
[12] [12] Sambrook J, Russell D W. Molecular cloning: a laboratory manual[M]. NY: Cold Spring Harbor Laboratory Press, 2001: 898-915
[13] [13] Higo K, Ugawa Y, Iwamoto M, et al. Plant cis-acting regulatory DNA elements (PLACE) database[J]. Nucleic Acids Research, 1999, 27(1): 297-300
[14] [14] Jefferson R A. Assaying chimeric genes in plants: the GUS gene fusion system[J]. Plant Molecular Biology Reporter, 1987, 5(4): 387-405
[15] [15] Pedersen A G, Baldi P, Chauvin Y, et al. The biology of eukaryotic promoter prediction—a review[J]. Computers and Chemistry, 1999, 23(3-4): 191-207
[16] [16] Lewin B. Gene VIII[M]. NJ: Pearson Prentice Hall, 2004
[17] [17] Tjaden G, Coruzzi G M. A novel AT-rich DNA binding protein that combines an HMG I-like DNA binding domain with a putative transcription domain[J]. The Plant Cell, 1994, 6(1): 107-118
[18] [18] Bustos M M, Guiltinan M J, Jordano J, et al. Regulation of β-Glucuronidase Expression in Transgenic Tobacco Plants by an A/T-Rich, cis-Acting Sequence Found Upstream of a French Bean β-Phaseolin Gene[J]. The Plant Cell, 1989, 1(9): 839-853
[19] [19] Yang N S, Christou P. Cell type specific expression of a CaMV 35S-GUS gene in transgenic soybean plants[J]. Developmental Genetics, 1990, 11(4): 289-293
[20] [20] Torres-schumann S, Ringli C, Heierli D, et al. In vitro binding of the tomato bZIP transcriptional activator VSF-1 to a regulatory element that controls xylem-specific gene expression.[J]. The Plant Journal, 1996, 9(3): 283
[21] [21] Keller B, Baumgartner C. Vascular-specific expression of the bean GRP 1.8 gene is negatively regulated[J]. The Plant Cell, 1991, 3(10): 1051-1061
[22] [22] Hatton D, Sablowski R, Yung M H, et al. Two classes of cis sequences contribute to tissue-specific expression of a PAL2 promoter in transgenic tobacco[J]. The Plant Journal, 1995, 7(6): 859-876
[23]