[1] Zhang S, Zhou J, Han S, et al. Four abiotic stress-induced miRNA families differentially regulated in the embryogenic and non-embryogenic callus tissues of Larix kaempferi (Lamb.) Carr.[J]. Biochemical and biophysical research communications, 2010, 398(3): 355-360
[2] Cairney J, Pullman G S. The cellular and molecular biology of conifer embryogenesis[J]. New Phytologist, 2007, 176(3): 511-536
[3] Schmidt E D, Guzzo F, Toonen M A, et al. A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos[J]. Development, 1997, 124(10): 2049-2062
[4] Lotan T, Ohto M, Yee K M, et al. Arabidopsis LEAFY COTYLEDON1 Is Sufficient to Induce Embryo Development in Vegetative Cells[J]. Cell, 1998, 93(7): 1195-1205
[5] Clark S E, Williams R W, Meyerowitz E M. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis[J]. Cell, 1997, 89(4): 575-585
[6] Mayer K F X, Schoof H, Haecker A, et al. Role of WUSCHEL in Regulating Stem Cell Fate in the Arabidopsis Shoot Meristem[J]. Cell, 1998, 95(6): 805-815
[7] Espelund M, Sbe-Larssen S, Hughes D W, et al. Late embryogenesis-abundant genes encoding proteins with different numbers of hydrophilic repeats are regulated differentially by abscisic acid and osmotic stress[J]. The Plant Journal, 1992, 2(2): 241-252
[8] Boucheron E, Healy J H S, Bajon C, et al. Ectopic expression of Arabidopsis CYCD2 and CYCD3 in tobacco has distinct effects on the structural organization of the shoot apical meristem[J]. Journal of experimental botany, 2005, 56(409): 123-134
[9] Kreuger M, van Holst G J. Arabinogalactan proteins and plant differentiation[J]. Plant molecular biology, 1996, 30(6): 1077-1086
[10] Zhang X S, Choi J H, Heinz J, et al. Domain-specific positive selection contributes to the evolution of Arabidopsis leucine-rich repeat receptor-like kinase (LRR RLK) genes[J]. Journal of molecular evolution, 2006, 63(5): 612-621
[11] Becraft P W. Receptor kinase signaling in plant development[J]. Annual review of cell and developmental biology, 2002, 18(1): 163-192
[12] Hecht V, Vielle-Calzada J P, Hartog M V, et al. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture[J]. Plant Physiology, 2001, 127(3): 803-816
[13] Baudino S, Hansen S, Brettschneider R, et al. Molecular characterisation of two novel maize LRR receptor-like kinases, which belong to the SERK gene family[J]. Planta, 2001, 213(1): 1-10
[14] Hu H, Xiong L, Yang Y. Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection[J]. Planta, 2005, 222(1): 107-117
[15] Budiman M A, Mao L, Wood T C, et al. A deep-coverage tomato BAC library and prospects toward development of an STC framework for genome sequencing[J]. Genome research, 2000, 10(1): 129-136
[16] de Oliveira Santos M, Romano E, Yotoko K S C, et al. Characterisation of the cacao somatic embryogenesis receptor-like kinase (SERK) gene expressed during somatic embryogenesis[J]. Plant Science, 2005, 168(3): 723-729
[17] Thomas C, Meyer D, Himber C, et al. Spatial expression of a sunflower SERK gene during induction of somatic embryogenesis and shoot organogenesis[J]. Plant Physiology and Biochemistry, 2004, 42(1): 35-42
[18] Nolan K E, Irwanto R R, Rose R J. Auxin up-regulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures[J]. Plant Physiology, 2003, 133(1): 218-230
[19] 高 燕, 席梦利, 王桂凤, 等. 马尾松体细胞胚胎发生相关基因 PmSERK1 的克隆与表达分析[J]. 分子植物育种, 2010 (1): 53-58
[20] Steiner N, Santa-Catarina C, Guerra M P, et al. A gymnosperm homolog of SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE-1 (SERK1)is expressed during somatic embryogenesis[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2012, 109(1): 41-50
[21] 齐力旺. 华北落叶松体细胞胚胎发生及遗传转化实验系统的建立[J]. 实验生物学报, 2000, 33(4): 354-365
[22] Ren J, Wen L, Gao X, et al. DOG 1.0: illustrator of protein domain structures[J]. Cell research, 2009, 19(2): 271-273
[23] Arnold K, Bordoli L, Kopp J, et al. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling[J]. Bioinformatics, 2006, 22(2): 195-201
[24] Guex N, Peitsch M C. SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modeling[J]. Electrophoresis, 1997, 18(15): 2714-2723
[25] Schwede T, Kopp J, Guex N, et al. SWISS-MODEL: an automated protein homology-modeling server[J]. Nucleic acids research, 2003, 31(13): 3381-3385
[26] Kateřina S, Zuzana V, Lukáš F, et al. The role of actin isoforms in somatic embryogenesis in Norway spruce[J]. BMC Plant Biology, 2010, 10:89
[27] Shimada T, Hirabayashi T, Endo T, et al. Isolation and characterization of the somatic embryogenesis receptor-like kinase gene homologue (CitSERK1) from Citrus unshiu Marc[J]. Scientia Horticulturae, 2005, 103(2): 233-238