[1] Mascia T, Santovito E, Gallitelli D, et al. Evaluation of reference genes for quantitative reverse-transcription polymerase chain reaction normalization in infected tomato plants[J]. Mol Plant Pathol., 2010, 11: 805-816
[2] Heid C A, Stevens J, Livak K J, et al. Real time quantitative PCR[J]. Genome Res, 1996,6 (10): 986-994
[3] Radonic A, Thulke S, Mackay I M, et al. Guideline to reference gene selection for quantitative real-time PCR[J]. Biochemical and Biophysical Research Communications, 2004, 313: 856-862
[4] 胡瑞波, 范成明, 傅永福. 植物实时荧光定量PCR内参基因的选择[J]. 中国农业科技导报, 2009, 11(6): 30-36
[5] Lee J M, Roche J R, Donaghy D J, et al. Validation of reference genes for quantitative RT-PCR studies of gene expression in perennial ryegrass (Lolium perenne L.)[J]. BMC Mol Biol, 2010, 11: 8
[6] de Oliveira L A, Breton M C, Bastolla F M, et al. Reference genes for the normalization of gene expression in Eucalyptus species[J]. Plant Cell Physiol, 2012, 53 (2): 405-422
[7] Czechowski T,Stitt M,Ahnmnn T, et al. Genome wide identification and testing of superior reference genes for transcript normalization in Arabidopsis[J]. Plant Physio1, 2005, 139: 5-17
[8] Brunner A M, Yakovlev I A, Strauss S H. Validating internal controls for quantitative plant gene expression studies[J]. BMC Plant Biology, 2004, 4: 14
[9] Udvardi M K, Czechowski T, Scheible W R. Eleven golden rules of quantitative RT-PCR[J]. Plant Cell, 2008, 20(7): 1736-1737
[10] Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biol, 2002, 3 (7): RESEARCH0034
[11] Andersen C L, Jensen J L, Orntoft T F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets[J]. Cancer Res, 2004, 64 (15): 5245-5250
[12] Zhang Yuan, Zhang Shougong, Han Suying, et al. Transcriptome profiling and in silico analysis of somatic embryos in Japanese larch (Larix leptolepis)[J]. Plant Cell Reports, 2012, 31(9): 1637-1657
[13] 袁 伟, 万红建, 杨悦俭. 植物实时荧光定量PCR内参基因的特点及选择[J]. 植物学报, 2012, 47(4): 427-436
[14] Exposito-Rodriguez M, Borges A A, Borges-Perez A, et al. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process[J]. BMC Plant Biol, 2008, 8: 131
[15] Reid K E, Olsson N, Schlosser J, et al. An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development[J]. BMC Plant Biol, 2006, 6: 27
[16] 涂礼莉, 张献龙, 刘迪秋, 等. 棉花纤维发育和体细胞胚发生过程中实时定量PCR内对照基因的筛选[J]. 科学通报, 2007, 52(20): 2379-2385
[17] 孙美莲, 王云生, 杨冬青, 等. 茶树实时荧光定量PCR分析中内参基因的选择[J]. 植物学报, 2010, 45 (5): 579-587
[18] Jian B, Liu B, Bi Y, et al. Validation of internal control for gene expression study in soybean by quantitative real-time PCR[J]. BMC Mol Biol, 2008, 9: 59
[19] 李 爱, 刘 超, 韩春乐, 等. 落叶松优势杂交子代与亲本间基因组DNA甲基化变异研究[J]. 南开大学学报:自然科学版, 2012, 45(5): 66-71
[20] Zhang Shougong, Han Suying, Li Wanfeng, et al. miRNA regulation in fast and slow-growing hybrid Larix trees[J]. Trees, 2012, 26(5): 1597-1604
[21] Zhang Junhong, Zhang Shougong, Han Suying, et al. Genome-wide identification of microRNAs in Japanese larch and stage-specific modulation of eleven conserved microRNAs and their targets during somatic embryogenesis[J]. Planta, 2012, 236(2): 647-657
[22] Li Wanfeng, Zhang Shougong, Han Suying, et al. Regulation of LaMYB33 by miR159 during maintenance of embryogenic potential and somatic embryo maturation in Larix kaempferi (Lamb.) Carr.[J]. Plant Cell, Tissue and Organ Culture, 2013, 113(1): 131-136