[1] 丁明明, 苏晓华, 黄秦军. 碳稳定同位素技术在林木遗传改良中的应用[J]. 世界林业研究, 2005, 18(5): 21-26
[2] Thumma B R, Nolan M F, Evans R, et al. Polymorphisms in cinnamoyl CoA reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp[J]. Genetics, 2005, 171(3): 1257-1265
[3] Cosgrove D J. Loosening of plant cell walls by expansins[J]. Nature, 2000, 407(6802): 321-326
[4] Cosgrove D J. Expansive growth of plant cell walls[J]. Plant Physiol Biochem, 2000, 38(1-2): 109-142
[5] Sampedro J, Cosgrove D J. The expansin superfamily[J]. Genome Biol, 2005, 6(12): 242
[6] 高 英, 陈乃芝, 熊艳梅, 等. 扩张蛋白在旱稻的免疫组化定位及对旱稻抗旱性的表达分析[J]. 自然科学进展, 2006, 16(4): 475-479
[7] Abuqamar S, Ajeb S, Sham A, et al. A mutation in the expansin-like A2 gene enhances resistance to necrotrophic fungi and hypersensitivity to abiotic stress in Arabidopsis thaliana[J]. Mol Plant Pathol, 2013, 14(8): 813-827
[8] Lü P, Kang M, Jiang X, et al. RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis[J]. Planta, 2013, 237(6): 1547-1559
[9] Li F, Xing S, Guo Q, et al. Drought tolerance through over-expression of the expansin gene TaEXPB23 in transgenic tobacco[J]. J Plant Physiol, 2011, 168(9): 960-966
[10] Han Y Y, Li A X, Li F, et al. Characterization of a wheat (Triticum aestivum L.) expansin gene, TaEXPB23, involved in the abiotic stress response and phytohormone regulation[J]. Plant Physiol Biochem, 2012, 54: 49-58
[11] Guo W, Zhao J, Li X, et al. A soybean β-expansin gene GmEXPB 2 intrinsically involved in root system architecture responses to abiotic stresses[J]. Plant J, 2011, 66(3): 541-552
[12] Geilfus C M, Zörb C, Mühling K H. Salt stress differentially affects growth-mediating β-expansins in resistant and sensitive maize (Zea mays L.) [J]. Plant Physiol Biochem, 2010, 48(12): 993-998
[13] Gray-Mitsumune M, Mellerowicz E J, Abe H, et al. Expansins abundant in secondary xylem belong to subgroup A of the alpha-expansin gene family[J]. Plant Physiol, 2004, 135(3): 1552-1564
[14] 高 燕. 杉木木材形成过程扩展蛋白基因的克隆与表达分析[J]. 林业科学, 2011, 47(11): 44-51
[15] 欧阳昆唏, 李俊成, 黄 浩, 等. 团花树α扩展蛋白基因的克隆及表达分析[J]. 林业科学, 2013, 49(9): 62-71
[16] An C, Saha S, Jenkins J N, et al. Transcriptome profiling, sequence characterization, and SNP-based chromosomal assignment of the EXPANSIN genes in cotton[J]. Mol Genet Genomics, 2007, 278(5): 539-553
[17] Chu Y, Su X, Huang Q, et al. Patterns of DNA sequence variation at candidate gene loci in black poplar (Populus nigra L.) as revealed by single nucleotide polymorphisms[J]. Genetica, 2009, 137(2): 141-150
[18] 丁明明, 苏晓华, 黄秦军. 欧洲黑杨基因资源稳定碳同位素组成特征[J]. 林业科学研究, 2006, 19(3): 272-276
[19] Searle S R. Linear models for unbalanced data[M]. Newyork: John Wiley & Sons, 1987
[20] Bradbury P J, Zhang Z, Kroon D E, et al. TASSEL: Software for association mapping of complex traits in diverse samples[J]. Bioinformatics, 2007, 23(19): 2633-2635
[21] Hill W G, Robertson A. Linkage disequilibrium in finite populations[J]. Theor Appl Genet, 1968, 38(6): 226-231
[22] Martin B, Thorstenson Y R. Stable carbon isotope composition (delta C), water use efficiency, and biomass productivity of Lycopersicon esculentum, Lycopersicon pennellii, and the F1 Hybrid[J]. Plant Physiol, 1988, 88(1): 213-217
[23] Tuskan G A, Difazio S, Jansson S, et al. The genome of black cottonwood[J]. Populus trichocarpa (Torr. & Gray). Science, 2006, 313(5793): 1596-1604
[24] Lo H S, Wang Z, Hu Y, et al. Allelic variation in gene expression is common in the human genome[J]. Genome Res, 2003, 13(8):1855-1862
[25] Wittkopp P J, Haerum B K, Clark A G. Evolutionary changes in cis and trans gene regulation[J]. Nature, 2004, 430(6995):85-88
[26] Ingvarsson P K, Street N R. Association genetics of complex traits in plants[J]. New Phytol, 2011, 189(4): 909-922
[27] González-Martínez S C, Huber D, Ersoz E, et al. Association genetics in Pinus taeda L. II. Carbon isotope discrimination[J]. Heredity, 2008, 101(1): 19-26